Spaces:
Runtime error
Runtime error
import gradio as gr | |
import torch | |
from transformers import AutoModelForCausalLM, AutoTokenizer | |
from peft import PeftModel, PeftConfig | |
from transformers import AutoModelForCausalLM | |
config = PeftConfig.from_pretrained("AliEssa555/latest-podcast-model-ft") | |
base_model = AutoModelForCausalLM.from_pretrained("TheBloke/Mistral-7B-Instruct-v0.2-GPTQ") | |
model = PeftModel.from_pretrained(base_model, "AliEssa555/latest-podcast-model-ft") | |
#model_name = "path_to_your_fine_tuned_model" # Use the local path or the Hugging Face model hub ID if published | |
#model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.float16) | |
tokenizer = AutoTokenizer.from_pretrained(model) | |
if torch.cuda.is_available(): | |
model = model.to("cuda") | |
# Generate a response based on user input | |
def generate_response(user_input): | |
# Format the input as an instructional prompt | |
prompt = f"[INST] User: {user_input} [/INST] Assistant:" | |
# Tokenize input and generate response | |
inputs = tokenizer(prompt, return_tensors="pt").to("cuda" if torch.cuda.is_available() else "cpu") | |
output_tokens = model.generate(inputs["input_ids"], max_length=512, temperature=0.7, top_p=0.9, do_sample=True) | |
# Decode and format the output | |
response = tokenizer.decode(output_tokens[0], skip_special_tokens=True) | |
return response.split("Assistant:")[-1].strip() # Remove "Assistant:" tag if present | |
# Define Gradio interface | |
with gr.Blocks() as demo: | |
gr.Markdown("## LLM Podcast Response Generator") | |
with gr.Row(): | |
user_input = gr.Textbox(label="Enter your question related to the podcast:", placeholder="Type your question here...") | |
with gr.Row(): | |
response_output = gr.Textbox(label="Model's Response") | |
submit_button = gr.Button("Generate Response") | |
# Connect button to the function | |
submit_button.click(fn=generate_response, inputs=user_input, outputs=response_output) | |
# Launch the Gradio app | |
demo.launch() | |