File size: 1,958 Bytes
96cf708
 
 
 
 
 
 
a544069
96cf708
5495567
96cf708
 
5fe82b2
 
96cf708
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
import gradio as gr
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

from peft import PeftModel, PeftConfig
from transformers import AutoModelForCausalLM

config = PeftConfig.from_pretrained("AliEssa555/latest-podcast-model-ft")
base_model = AutoModelForCausalLM.from_pretrained("TheBloke/Mistral-7B-Instruct-v0.2-GPTQ")
model = PeftModel.from_pretrained(base_model, "AliEssa555/latest-podcast-model-ft")

#model_name = "path_to_your_fine_tuned_model"  # Use the local path or the Hugging Face model hub ID if published
#model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.float16)
tokenizer = AutoTokenizer.from_pretrained(model)

if torch.cuda.is_available():
    model = model.to("cuda")

# Generate a response based on user input
def generate_response(user_input):
    # Format the input as an instructional prompt
    prompt = f"[INST] User: {user_input} [/INST] Assistant:"
    
    # Tokenize input and generate response
    inputs = tokenizer(prompt, return_tensors="pt").to("cuda" if torch.cuda.is_available() else "cpu")
    output_tokens = model.generate(inputs["input_ids"], max_length=512, temperature=0.7, top_p=0.9, do_sample=True)
    
    # Decode and format the output
    response = tokenizer.decode(output_tokens[0], skip_special_tokens=True)
    return response.split("Assistant:")[-1].strip()  # Remove "Assistant:" tag if present

# Define Gradio interface
with gr.Blocks() as demo:
    gr.Markdown("## LLM Podcast Response Generator")
    with gr.Row():
        user_input = gr.Textbox(label="Enter your question related to the podcast:", placeholder="Type your question here...")
    with gr.Row():
        response_output = gr.Textbox(label="Model's Response")
    submit_button = gr.Button("Generate Response")
    
    # Connect button to the function
    submit_button.click(fn=generate_response, inputs=user_input, outputs=response_output)

# Launch the Gradio app
demo.launch()