Commit
·
9ecda95
1
Parent(s):
5eceee5
Update app.py
Browse files
app.py
CHANGED
@@ -1,3 +1,99 @@
|
|
1 |
import gradio as gr
|
2 |
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
|
3 |
+
|
4 |
+
import gradio as gr
|
5 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, GenerationConfig
|
6 |
+
|
7 |
+
from transformers import GPT2TokenizerFast,GPT2LMHeadModel
|
8 |
+
tokenizer = GPT2TokenizerFast.from_pretrained("AlexWortega/instruct_rugptlarge")
|
9 |
+
special_tokens_dict = {'additional_special_tokens': ['<code>', '</code>', '<instructionS>', '<instructionE>', '<next>']}
|
10 |
+
|
11 |
+
tokenizer.add_special_tokens(special_tokens_dict)
|
12 |
+
device = 'cuda' # мэх дорога
|
13 |
+
model = GPT2LMHeadModel.from_pretrained("AlexWortega/instruct_rugptlarge")
|
14 |
+
#
|
15 |
+
|
16 |
+
model.resize_token_embeddings(len(tokenizer))
|
17 |
+
|
18 |
+
def generate_prompt(instruction, input=None):
|
19 |
+
if input:
|
20 |
+
return f"{input}:"
|
21 |
+
return f"{instruction}"
|
22 |
+
|
23 |
+
def generate_seqs(q, temp, topp, topk, nb, maxtok):
|
24 |
+
k=1
|
25 |
+
gen_kwargs = {
|
26 |
+
"min_length": 20,
|
27 |
+
"max_new_tokens": maxtok,
|
28 |
+
"top_k": topk,
|
29 |
+
"top_p": topp,
|
30 |
+
"do_sample": True,
|
31 |
+
"early_stopping": True,
|
32 |
+
"no_repeat_ngram_size": 2,
|
33 |
+
"temperature":temp,
|
34 |
+
|
35 |
+
"eos_token_id": tokenizer.eos_token_id,
|
36 |
+
"pad_token_id": tokenizer.eos_token_id,
|
37 |
+
"use_cache": True,
|
38 |
+
"repetition_penalty": 1.5,
|
39 |
+
"length_penalty": 0.8,
|
40 |
+
"num_beams": nb,
|
41 |
+
"num_return_sequences": k
|
42 |
+
}
|
43 |
+
if len(q)>0:
|
44 |
+
q = q + '<instructionS>'
|
45 |
+
else:
|
46 |
+
q = 'Как зарабатывать денег на нейросетях?' + '<instructionS>'
|
47 |
+
t = tokenizer.encode(q, return_tensors='pt').to(device)
|
48 |
+
g = model.generate(t, **gen_kwargs)
|
49 |
+
generated_sequences = tokenizer.batch_decode(g, skip_special_tokens=False)
|
50 |
+
#print(generated_sequences)
|
51 |
+
# Add </s></s>A: after the question and before each generated sequence
|
52 |
+
#sequences = [f"H:{q}</s></s>A:{s.replace(q, '')}" for s in generated_sequences]
|
53 |
+
|
54 |
+
# Compute the reward score for each generated sequence
|
55 |
+
#cores = [reward_model.reward_score(q, s.split('</s></s>A:')[-1]) for s in sequences]
|
56 |
+
|
57 |
+
# Return the k sequences with the highest score and their corresponding scores
|
58 |
+
# results = [(s, score) for score, s in sorted(zip(scores, sequences), reverse=True)[:k]]
|
59 |
+
ans = generated_sequences[0].replace('<instructionS>','\n').replace('<instructionE>','').replace('<|endoftext|>','')
|
60 |
+
return ans
|
61 |
+
|
62 |
+
description_html = '''
|
63 |
+
<p>Обучена на 2v100, коллективом авторов:</p>
|
64 |
+
<ul>
|
65 |
+
<li><a href="https://t.me/YallenGusev" target="_blank">@YallenGusev</a></li>
|
66 |
+
<li><a href="https://t.me/lovedeathtransformers" target="_blank">@lovedeathtransformers</a></li>
|
67 |
+
<li><a href="https://t.me/alexkuk" target="_blank">@alexkuk</a></li>
|
68 |
+
<li><a href="https://t.me/chckdskeasfsd" target="_blank">@chckdskeasfsd</a></li>
|
69 |
+
<li><a href="https://t.me/dno5iq" target="_blank">@dno5iq</a></li>
|
70 |
+
</ul>
|
71 |
+
'''
|
72 |
+
|
73 |
+
g = gr.Interface(
|
74 |
+
fn=generate_seqs,
|
75 |
+
inputs=[
|
76 |
+
gr.components.Textbox(
|
77 |
+
lines=2, label="Впишите сюда задачу, а я попробую решить", placeholder="Как зарабатывать денег на нейросетях?"
|
78 |
+
),
|
79 |
+
#gr.components.Textbox(lines=2, label="Вход", placeholder="Нет"),
|
80 |
+
gr.components.Slider(minimum=0.1, maximum=2, value=1.0, label="Temperature"),
|
81 |
+
gr.components.Slider(minimum=0, maximum=1, value=0.9, label="Top p"),
|
82 |
+
gr.components.Slider(minimum=0, maximum=100, value=50, label="Top k"),
|
83 |
+
gr.components.Slider(minimum=0, maximum=5, step=1, value=4, label="Beams"),
|
84 |
+
gr.components.Slider(
|
85 |
+
minimum=1, maximum=256, step=1, value=100, label="Max tokens"
|
86 |
+
),
|
87 |
+
],
|
88 |
+
outputs=[
|
89 |
+
gr.inputs.Textbox(
|
90 |
+
lines=5,
|
91 |
+
label="Output",
|
92 |
+
)
|
93 |
+
],
|
94 |
+
title="ruInstructlarge",
|
95 |
+
description=description_html)
|
96 |
+
|
97 |
+
|
98 |
+
g.queue(concurrency_count=5)
|
99 |
+
g.launch(share=True)
|