Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,5 +1,5 @@
|
|
1 |
from PyPDF2 import PdfReader
|
2 |
-
from transformers import pipeline,
|
3 |
import torch
|
4 |
import gradio as gr
|
5 |
from gtts import gTTS
|
@@ -8,12 +8,12 @@ from gtts import gTTS
|
|
8 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
9 |
|
10 |
# Инициализация модели для суммаризации
|
11 |
-
summarizer = pipeline("summarization", model="
|
12 |
|
13 |
# Инициализация модели для перевода
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
|
18 |
def parse_pdf(pdf_file):
|
19 |
"""Функция для извлечения текста из PDF файла."""
|
@@ -23,23 +23,24 @@ def parse_pdf(pdf_file):
|
|
23 |
extracted_text += page.extract_text() or ""
|
24 |
return extracted_text
|
25 |
|
26 |
-
def summarize(text, max_length=
|
27 |
"""Функция для суммаризации текста."""
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
|
|
|
|
|
|
|
|
32 |
|
33 |
def translate(text):
|
34 |
"""Функция для перевода текста на русский."""
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
result = tokenizer_translation.batch_decode(generated_tokens, skip_special_tokens=True)
|
42 |
-
return result[0]
|
43 |
|
44 |
def text_to_speech(text, language='ru'):
|
45 |
"""Функция для преобразования текста в аудиофайл."""
|
@@ -48,7 +49,7 @@ def text_to_speech(text, language='ru'):
|
|
48 |
tts.save(audio_file)
|
49 |
return audio_file
|
50 |
|
51 |
-
def process_pdf(pdf_file):
|
52 |
"""Основная функция обработки PDF файла."""
|
53 |
if not pdf_file:
|
54 |
return "No input provided."
|
@@ -61,25 +62,32 @@ def process_pdf(pdf_file):
|
|
61 |
summary = summarize(extracted_text)
|
62 |
print(f"Summary: {summary}")
|
63 |
|
64 |
-
#
|
65 |
-
|
66 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
67 |
|
68 |
# Преобразование текста в аудио
|
69 |
-
audio_file = text_to_speech(
|
70 |
-
return
|
71 |
|
72 |
# Создание Gradio интерфейса
|
73 |
with gr.Blocks() as demo:
|
74 |
gr.Markdown("# PDF Summarizer, Translator, and Text-to-Speech")
|
75 |
-
gr.Markdown("Upload a PDF file to summarize, translate
|
76 |
|
|
|
77 |
pdf_input = gr.File(label="Upload PDF File", type="filepath")
|
78 |
-
text_output = gr.Textbox(label="
|
79 |
audio_output = gr.Audio(label="Generated Audio", type="filepath")
|
80 |
process_button = gr.Button("Process PDF")
|
81 |
|
82 |
-
process_button.click(process_pdf, inputs=pdf_input, outputs=[text_output, audio_output])
|
83 |
|
84 |
# Запуск приложения
|
85 |
demo.launch(debug=True)
|
|
|
1 |
from PyPDF2 import PdfReader
|
2 |
+
from transformers import pipeline, MarianMTModel, MarianTokenizer
|
3 |
import torch
|
4 |
import gradio as gr
|
5 |
from gtts import gTTS
|
|
|
8 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
9 |
|
10 |
# Инициализация модели для суммаризации
|
11 |
+
summarizer = pipeline("summarization", model="philschmid/bart-large-cnn-samsum", device=0 if device.type == "cuda" else -1)
|
12 |
|
13 |
# Инициализация модели для перевода
|
14 |
+
translation_model_name = "Helsinki-NLP/opus-mt-en-ru"
|
15 |
+
translation_tokenizer = MarianTokenizer.from_pretrained(translation_model_name)
|
16 |
+
translation_model = MarianMTModel.from_pretrained(translation_model_name).to(device)
|
17 |
|
18 |
def parse_pdf(pdf_file):
|
19 |
"""Функция для извлечения текста из PDF файла."""
|
|
|
23 |
extracted_text += page.extract_text() or ""
|
24 |
return extracted_text
|
25 |
|
26 |
+
def summarize(text, max_length=130, min_length=30):
|
27 |
"""Функция для суммаризации текста."""
|
28 |
+
# Разделяем текст на части, если он слишком большой
|
29 |
+
max_chunk_size = 1024
|
30 |
+
chunks = [text[i:i + max_chunk_size] for i in range(0, len(text), max_chunk_size)]
|
31 |
+
summaries = []
|
32 |
+
for chunk in chunks:
|
33 |
+
result = summarizer(chunk, max_length=max_length, min_length=min_length, do_sample=False)
|
34 |
+
summaries.append(result[0]['summary_text'])
|
35 |
+
return " ".join(summaries)
|
36 |
|
37 |
def translate(text):
|
38 |
"""Функция для перевода текста на русский."""
|
39 |
+
# Токенизация и перевод
|
40 |
+
inputs = translation_tokenizer(text, return_tensors="pt", truncation=True, padding=True).to(device)
|
41 |
+
translated_tokens = translation_model.generate(**inputs)
|
42 |
+
translated_text = translation_tokenizer.decode(translated_tokens[0], skip_special_tokens=True)
|
43 |
+
return translated_text
|
|
|
|
|
|
|
44 |
|
45 |
def text_to_speech(text, language='ru'):
|
46 |
"""Функция для преобразования текста в аудиофайл."""
|
|
|
49 |
tts.save(audio_file)
|
50 |
return audio_file
|
51 |
|
52 |
+
def process_pdf(pdf_file, language):
|
53 |
"""Основная функция обработки PDF файла."""
|
54 |
if not pdf_file:
|
55 |
return "No input provided."
|
|
|
62 |
summary = summarize(extracted_text)
|
63 |
print(f"Summary: {summary}")
|
64 |
|
65 |
+
# Если выбран русский язык, переводим текст
|
66 |
+
if language == "rus":
|
67 |
+
translated_text = translate(summary)
|
68 |
+
print(f"Translated Text: {translated_text}")
|
69 |
+
final_text = translated_text
|
70 |
+
audio_language = 'ru'
|
71 |
+
else:
|
72 |
+
final_text = summary
|
73 |
+
audio_language = 'en'
|
74 |
|
75 |
# Преобразование текста в аудио
|
76 |
+
audio_file = text_to_speech(final_text, language=audio_language)
|
77 |
+
return final_text, audio_file
|
78 |
|
79 |
# Создание Gradio интерфейса
|
80 |
with gr.Blocks() as demo:
|
81 |
gr.Markdown("# PDF Summarizer, Translator, and Text-to-Speech")
|
82 |
+
gr.Markdown("Upload a PDF file to summarize, translate (if needed), and convert to audio.")
|
83 |
|
84 |
+
language = gr.Radio(choices=["eng", "rus"], label="Output Language", value="rus")
|
85 |
pdf_input = gr.File(label="Upload PDF File", type="filepath")
|
86 |
+
text_output = gr.Textbox(label="Processed Text", lines=10)
|
87 |
audio_output = gr.Audio(label="Generated Audio", type="filepath")
|
88 |
process_button = gr.Button("Process PDF")
|
89 |
|
90 |
+
process_button.click(process_pdf, inputs=[pdf_input, language], outputs=[text_output, audio_output])
|
91 |
|
92 |
# Запуск приложения
|
93 |
demo.launch(debug=True)
|