File size: 73,008 Bytes
46a3752 dc7c5f5 46a3752 dc7c5f5 46a3752 dc7c5f5 46a3752 dc7c5f5 46a3752 dc7c5f5 46a3752 dc7c5f5 46a3752 dc7c5f5 46a3752 dc7c5f5 46a3752 dc7c5f5 46a3752 dc7c5f5 46a3752 dc7c5f5 46a3752 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 |
from typing import Dict, List, Union
from pathlib import Path
import datasets
import torch
import evaluate
import json
from tqdm import tqdm
import copy
import pickle
from typing import Dict, List, Tuple, Union
from tqdm import tqdm
import numpy as np
import torch
import torch.distributed as dist
from datasets import Dataset
__author__ = 'tsungyi'
# Interface for manipulating masks stored in RLE format.
#
# RLE is a simple yet efficient format for storing binary masks. RLE
# first divides a vector (or vectorized image) into a series of piecewise
# constant regions and then for each piece simply stores the length of
# that piece. For example, given M=[0 0 1 1 1 0 1] the RLE counts would
# be [2 3 1 1], or for M=[1 1 1 1 1 1 0] the counts would be [0 6 1]
# (note that the odd counts are always the numbers of zeros). Instead of
# storing the counts directly, additional compression is achieved with a
# variable bitrate representation based on a common scheme called LEB128.
#
# Compression is greatest given large piecewise constant regions.
# Specifically, the size of the RLE is proportional to the number of
# *boundaries* in M (or for an image the number of boundaries in the y
# direction). Assuming fairly simple shapes, the RLE representation is
# O(sqrt(n)) where n is number of pixels in the object. Hence space usage
# is substantially lower, especially for large simple objects (large n).
#
# Many common operations on masks can be computed directly using the RLE
# (without need for decoding). This includes computations such as area,
# union, intersection, etc. All of these operations are linear in the
# size of the RLE, in other words they are O(sqrt(n)) where n is the area
# of the object. Computing these operations on the original mask is O(n).
# Thus, using the RLE can result in substantial computational savings.
#
# The following API functions are defined:
# encode - Encode binary masks using RLE.
# decode - Decode binary masks encoded via RLE.
# merge - Compute union or intersection of encoded masks.
# iou - Compute intersection over union between masks.
# area - Compute area of encoded masks.
# toBbox - Get bounding boxes surrounding encoded masks.
# frPyObjects - Convert polygon, bbox, and uncompressed RLE to encoded RLE mask.
#
# Usage:
# Rs = encode( masks )
# masks = decode( Rs )
# R = merge( Rs, intersect=false )
# o = iou( dt, gt, iscrowd )
# a = area( Rs )
# bbs = toBbox( Rs )
# Rs = frPyObjects( [pyObjects], h, w )
#
# In the API the following formats are used:
# Rs - [dict] Run-length encoding of binary masks
# R - dict Run-length encoding of binary mask
# masks - [hxwxn] Binary mask(s) (must have type np.ndarray(dtype=uint8) in column-major order)
# iscrowd - [nx1] list of np.ndarray. 1 indicates corresponding gt image has crowd region to ignore
# bbs - [nx4] Bounding box(es) stored as [x y w h]
# poly - Polygon stored as [[x1 y1 x2 y2...],[x1 y1 ...],...] (2D list)
# dt,gt - May be either bounding boxes or encoded masks
# Both poly and bbs are 0-indexed (bbox=[0 0 1 1] encloses first pixel).
#
# Finally, a note about the intersection over union (iou) computation.
# The standard iou of a ground truth (gt) and detected (dt) object is
# iou(gt,dt) = area(intersect(gt,dt)) / area(union(gt,dt))
# For "crowd" regions, we use a modified criteria. If a gt object is
# marked as "iscrowd", we allow a dt to match any subregion of the gt.
# Choosing gt' in the crowd gt that best matches the dt can be done using
# gt'=intersect(dt,gt). Since by definition union(gt',dt)=dt, computing
# iou(gt,dt,iscrowd) = iou(gt',dt) = area(intersect(gt,dt)) / area(dt)
# For crowd gt regions we use this modified criteria above for the iou.
#
# To compile run "python setup.py build_ext --inplace"
# Please do not contact us for help with compiling.
#
# Microsoft COCO Toolbox. version 2.0
# Data, paper, and tutorials available at: http://mscoco.org/
# Code written by Piotr Dollar and Tsung-Yi Lin, 2015.
# Licensed under the Simplified BSD License [see coco/license.txt]
iou = _mask.iou
merge = _mask.merge
frPyObjects = _mask.frPyObjects
def encode(bimask):
if len(bimask.shape) == 3:
return _mask.encode(bimask)
elif len(bimask.shape) == 2:
h, w = bimask.shape
return _mask.encode(bimask.reshape((h, w, 1), order='F'))[0]
def decode(rleObjs):
if type(rleObjs) == list:
return _mask.decode(rleObjs)
else:
return _mask.decode([rleObjs])[:, :, 0]
def area(rleObjs):
if type(rleObjs) == list:
return _mask.area(rleObjs)
else:
return _mask.area([rleObjs])[0]
def toBbox(rleObjs):
if type(rleObjs) == list:
return _mask.toBbox(rleObjs)
else:
return _mask.toBbox([rleObjs])[0]
# This code is a copy and paste with small modifications of the code:
# https://github.com/rafaelpadilla/review_object_detection_metrics/blob/main/src/evaluators/coco_evaluator.py
from typing import List
import numpy as np
class MaskEvaluator(object):
@staticmethod
def iou(
dt: List[List[float]], gt: List[List[float]], iscrowd: List[bool]
) -> np.ndarray:
"""
Calculate the intersection over union (IoU) between detection bounding boxes (dt) and \
ground truth bounding boxes (gt).
Reference: https://github.com/rafaelpadilla/review_object_detection_metrics
Args:
dt (List[List[float]]): List of detection bounding boxes in the \
format [x, y, width, height].
gt (List[List[float]]): List of ground-truth bounding boxes in the \
format [x, y, width, height].
iscrowd (List[bool]): List indicating if each ground-truth bounding box \
is a crowd region or not.
Returns:
np.ndarray: Array of IoU values of shape (len(dt), len(gt)).
"""
assert len(iscrowd) == len(gt), "iou(iscrowd=) must have the same length as gt"
if len(dt) == 0 or len(gt) == 0:
return []
ious = np.zeros((len(dt), len(gt)), dtype=np.float64)
for g_idx, g in enumerate(gt):
for d_idx, d in enumerate(dt):
ious[d_idx, g_idx] = _jaccard(d, g, iscrowd[g_idx])
return ious
def _jaccard(a: List[float], b: List[float], iscrowd: bool) -> float:
"""
Calculate the Jaccard index (intersection over union) between two bounding boxes.
For "crowd" regions, we use a modified criteria. If a gt object is
marked as "iscrowd", we allow a dt to match any subregion of the gt.
Choosing gt' in the crowd gt that best matches the dt can be done using
gt'=intersect(dt,gt). Since by definition union(gt',dt)=dt, computing
iou(gt,dt,iscrowd) = iou(gt',dt) = area(intersect(gt,dt)) / area(dt)
For crowd gt regions we use this modified criteria above for the iou.
Args:
a (List[float]): Bounding box coordinates in the format [x, y, width, height].
b (List[float]): Bounding box coordinates in the format [x, y, width, height].
iscrowd (bool): Flag indicating if the second bounding box is a crowd region or not.
Returns:
float: Jaccard index between the two bounding boxes.
"""
eps = 4e-12
xa, ya, x2a, y2a = a[0], a[1], a[0] + a[2], a[1] + a[3]
xb, yb, x2b, y2b = b[0], b[1], b[0] + b[2], b[1] + b[3]
# innermost left x
xi = max(xa, xb)
# innermost right x
x2i = min(x2a, x2b)
# same for y
yi = max(ya, yb)
y2i = min(y2a, y2b)
# calculate areas
Aa = max(x2a - xa, 0.) * max(y2a - ya, 0.)
Ab = max(x2b - xb, 0.) * max(y2b - yb, 0.)
Ai = max(x2i - xi, 0.) * max(y2i - yi, 0.)
if iscrowd:
return Ai / (Aa + eps)
return Ai / (Aa + Ab - Ai + eps)
# This code is basically a copy and paste from the original cocoapi repo:
# https://github.com/cocodataset/cocoapi/blob/master/PythonAPI/pycocotools/cocoeval.py
# with the following changes have been made:
# * Replace the usage of mask (maskUtils) by MaskEvaluator.
# * Comment out prints in the evaluate() function.
# * Include a return of the function evaluate. Inspired
# by @ybelkada (https://huggingface.co/spaces/ybelkada/cocoevaluate/)
__author__ = "tsungyi"
import copy
import datetime
import time
from collections import defaultdict
from packaging import version
import numpy as np
if version.parse(np.__version__) < version.parse("1.24"):
dtype_float = np.float
else:
dtype_float = np.float32
class COCOeval:
# Interface for evaluating detection on the Microsoft COCO dataset.
#
# The usage for CocoEval is as follows:
# cocoGt=..., cocoDt=... # load dataset and results
# E = CocoEval(cocoGt,cocoDt); # initialize CocoEval object
# E.params.recThrs = ...; # set parameters as desired
# E.evaluate(); # run per image evaluation
# E.accumulate(); # accumulate per image results
# E.summarize(); # display summary metrics of results
# For example usage see evalDemo.m and http://mscoco.org/.
#
# The evaluation parameters are as follows (defaults in brackets):
# imgIds - [all] N img ids to use for evaluation
# catIds - [all] K cat ids to use for evaluation
# iouThrs - [.5:.05:.95] T=10 IoU thresholds for evaluation
# recThrs - [0:.01:1] R=101 recall thresholds for evaluation
# areaRng - [...] A=4 object area ranges for evaluation
# maxDets - [1 10 100] M=3 thresholds on max detections per image
# iouType - ['segm'] set iouType to 'segm', 'bbox' or 'keypoints'
# iouType replaced the now DEPRECATED useSegm parameter.
# useCats - [1] if true use category labels for evaluation
# Note: if useCats=0 category labels are ignored as in proposal scoring.
# Note: multiple areaRngs [Ax2] and maxDets [Mx1] can be specified.
#
# evaluate(): evaluates detections on every image and every category and
# concats the results into the "evalImgs" with fields:
# dtIds - [1xD] id for each of the D detections (dt)
# gtIds - [1xG] id for each of the G ground truths (gt)
# dtMatches - [TxD] matching gt id at each IoU or 0
# gtMatches - [TxG] matching dt id at each IoU or 0
# dtScores - [1xD] confidence of each dt
# gtIgnore - [1xG] ignore flag for each gt
# dtIgnore - [TxD] ignore flag for each dt at each IoU
#
# accumulate(): accumulates the per-image, per-category evaluation
# results in "evalImgs" into the dictionary "eval" with fields:
# params - parameters used for evaluation
# date - date evaluation was performed
# counts - [T,R,K,A,M] parameter dimensions (see above)
# precision - [TxRxKxAxM] precision for every evaluation setting
# recall - [TxKxAxM] max recall for every evaluation setting
# Note: precision and recall==-1 for settings with no gt objects.
#
# See also coco, mask, pycocoDemo, pycocoEvalDemo
#
# Microsoft COCO Toolbox. version 2.0
# Data, paper, and tutorials available at: http://mscoco.org/
# Code written by Piotr Dollar and Tsung-Yi Lin, 2015.
# Licensed under the Simplified BSD License [see coco/license.txt]
def __init__(self, cocoGt=None, cocoDt=None, iouType="segm"):
"""
Initialize CocoEval using coco APIs for gt and dt
:param cocoGt: coco object with ground truth annotations
:param cocoDt: coco object with detection results
:return: None
"""
if not iouType:
print("iouType not specified. use default iouType segm")
self.cocoGt = cocoGt # ground truth COCO API
self.cocoDt = cocoDt # detections COCO API
self.evalImgs = defaultdict(
list
) # per-image per-category evaluation results [KxAxI] elements
self.eval = {} # accumulated evaluation results
self._gts = defaultdict(list) # gt for evaluation
self._dts = defaultdict(list) # dt for evaluation
self.params = Params(iouType=iouType) # parameters
self._paramsEval = {} # parameters for evaluation
self.stats = [] # result summarization
self.ious = {} # ious between all gts and dts
if not cocoGt is None:
self.params.imgIds = sorted(cocoGt.getImgIds())
self.params.catIds = sorted(cocoGt.getCatIds())
def _prepare(self):
"""
Prepare ._gts and ._dts for evaluation based on params
:return: None
"""
def _toMask(anns, coco):
# modify ann['segmentation'] by reference
for ann in anns:
rle = coco.annToRLE(ann)
ann["segmentation"] = rle
p = self.params
if p.useCats:
gts = self.cocoGt.loadAnns(
self.cocoGt.getAnnIds(imgIds=p.imgIds, catIds=p.catIds)
)
dts = self.cocoDt.loadAnns(
self.cocoDt.getAnnIds(imgIds=p.imgIds, catIds=p.catIds)
)
else:
gts = self.cocoGt.loadAnns(self.cocoGt.getAnnIds(imgIds=p.imgIds))
dts = self.cocoDt.loadAnns(self.cocoDt.getAnnIds(imgIds=p.imgIds))
# convert ground truth to mask if iouType == 'segm'
if p.iouType == "segm":
_toMask(gts, self.cocoGt)
_toMask(dts, self.cocoDt)
# set ignore flag
for gt in gts:
gt["ignore"] = gt["ignore"] if "ignore" in gt else 0
gt["ignore"] = "iscrowd" in gt and gt["iscrowd"]
if p.iouType == "keypoints":
gt["ignore"] = (gt["num_keypoints"] == 0) or gt["ignore"]
self._gts = defaultdict(list) # gt for evaluation
self._dts = defaultdict(list) # dt for evaluation
for gt in gts:
self._gts[gt["image_id"], gt["category_id"]].append(gt)
for dt in dts:
self._dts[dt["image_id"], dt["category_id"]].append(dt)
self.evalImgs = defaultdict(list) # per-image per-category evaluation results
self.eval = {} # accumulated evaluation results
def evaluate(self):
"""
Run per image evaluation on given images and store results (a list of dict) in self.evalImgs
:return: None
"""
# tic = time.time()
# print("Running per image evaluation...")
p = self.params
# add backward compatibility if useSegm is specified in params
if not p.useSegm is None:
p.iouType = "segm" if p.useSegm == 1 else "bbox"
# print(
# "useSegm (deprecated) is not None. Running {} evaluation".format(
# p.iouType
# )
# )
# print("Evaluate annotation type *{}*".format(p.iouType))
p.imgIds = list(np.unique(p.imgIds))
if p.useCats:
p.catIds = list(np.unique(p.catIds))
p.maxDets = sorted(p.maxDets)
self.params = p
self._prepare()
# loop through images, area range, max detection number
catIds = p.catIds if p.useCats else [-1]
if p.iouType == "segm" or p.iouType == "bbox":
computeIoU = self.computeIoU
elif p.iouType == "keypoints":
computeIoU = self.computeOks
self.ious = {
(imgId, catId): computeIoU(imgId, catId)
for imgId in p.imgIds
for catId in catIds
}
evaluateImg = self.evaluateImg
maxDet = p.maxDets[-1]
self.evalImgs = [
evaluateImg(imgId, catId, areaRng, maxDet)
for catId in catIds
for areaRng in p.areaRng
for imgId in p.imgIds
]
self._paramsEval = copy.deepcopy(self.params)
ret_evalImgs = np.asarray(self.evalImgs).reshape(
len(catIds), len(p.areaRng), len(p.imgIds)
)
# toc = time.time()
# print("DONE (t={:0.2f}s).".format(toc - tic))
return ret_evalImgs
def computeIoU(self, imgId, catId):
p = self.params
if p.useCats:
gt = self._gts[imgId, catId]
dt = self._dts[imgId, catId]
else:
gt = [_ for cId in p.catIds for _ in self._gts[imgId, cId]]
dt = [_ for cId in p.catIds for _ in self._dts[imgId, cId]]
if len(gt) == 0 and len(dt) == 0:
return []
inds = np.argsort([-d["score"] for d in dt], kind="mergesort")
dt = [dt[i] for i in inds]
if len(dt) > p.maxDets[-1]:
dt = dt[0: p.maxDets[-1]]
if p.iouType == "segm":
g = [g["segmentation"] for g in gt]
d = [d["segmentation"] for d in dt]
elif p.iouType == "bbox":
g = [g["bbox"] for g in gt]
d = [d["bbox"] for d in dt]
else:
raise Exception("unknown iouType for iou computation")
# compute iou between each dt and gt region
iscrowd = [int(o["iscrowd"]) for o in gt]
ious = maskUtils.iou(d, g, iscrowd)
return ious
def computeOks(self, imgId, catId):
p = self.params
# dimention here should be Nxm
gts = self._gts[imgId, catId]
dts = self._dts[imgId, catId]
inds = np.argsort([-d["score"] for d in dts], kind="mergesort")
dts = [dts[i] for i in inds]
if len(dts) > p.maxDets[-1]:
dts = dts[0: p.maxDets[-1]]
# if len(gts) == 0 and len(dts) == 0:
if len(gts) == 0 or len(dts) == 0:
return []
ious = np.zeros((len(dts), len(gts)))
sigmas = p.kpt_oks_sigmas
vars = (sigmas * 2) ** 2
k = len(sigmas)
# compute oks between each detection and ground truth object
for j, gt in enumerate(gts):
# create bounds for ignore regions(double the gt bbox)
g = np.array(gt["keypoints"])
xg = g[0::3]
yg = g[1::3]
vg = g[2::3]
k1 = np.count_nonzero(vg > 0)
bb = gt["bbox"]
x0 = bb[0] - bb[2]
x1 = bb[0] + bb[2] * 2
y0 = bb[1] - bb[3]
y1 = bb[1] + bb[3] * 2
for i, dt in enumerate(dts):
d = np.array(dt["keypoints"])
xd = d[0::3]
yd = d[1::3]
if k1 > 0:
# measure the per-keypoint distance if keypoints visible
dx = xd - xg
dy = yd - yg
else:
# measure minimum distance to keypoints in (x0,y0) & (x1,y1)
z = np.zeros((k))
dx = np.max((z, x0 - xd), axis=0) + np.max((z, xd - x1), axis=0)
dy = np.max((z, y0 - yd), axis=0) + np.max((z, yd - y1), axis=0)
e = (dx ** 2 + dy ** 2) / vars / (gt["area"] + np.spacing(1)) / 2
if k1 > 0:
e = e[vg > 0]
ious[i, j] = np.sum(np.exp(-e)) / e.shape[0]
return ious
def evaluateImg(self, imgId, catId, aRng, maxDet):
"""
perform evaluation for single category and image
:return: dict (single image results)
"""
p = self.params
if p.useCats:
gt = self._gts[imgId, catId]
dt = self._dts[imgId, catId]
else:
gt = [_ for cId in p.catIds for _ in self._gts[imgId, cId]]
dt = [_ for cId in p.catIds for _ in self._dts[imgId, cId]]
if len(gt) == 0 and len(dt) == 0:
return None
for g in gt:
if g["ignore"] or (g["area"] < aRng[0] or g["area"] > aRng[1]):
g["_ignore"] = 1
else:
g["_ignore"] = 0
# sort dt highest score first, sort gt ignore last
gtind = np.argsort([g["_ignore"] for g in gt], kind="mergesort")
gt = [gt[i] for i in gtind]
dtind = np.argsort([-d["score"] for d in dt], kind="mergesort")
dt = [dt[i] for i in dtind[0:maxDet]]
iscrowd = [int(o["iscrowd"]) for o in gt]
# load computed ious
ious = (
self.ious[imgId, catId][:, gtind]
if len(self.ious[imgId, catId]) > 0
else self.ious[imgId, catId]
)
T = len(p.iouThrs)
G = len(gt)
D = len(dt)
gtm = np.zeros((T, G))
dtm = np.zeros((T, D))
gtIg = np.array([g["_ignore"] for g in gt])
dtIg = np.zeros((T, D))
if not len(ious) == 0:
for tind, t in enumerate(p.iouThrs):
for dind, d in enumerate(dt):
# information about best match so far (m=-1 -> unmatched)
iou = min([t, 1 - 1e-10])
m = -1
for gind, g in enumerate(gt):
# if this gt already matched, and not a crowd, continue
if gtm[tind, gind] > 0 and not iscrowd[gind]:
continue
# if dt matched to reg gt, and on ignore gt, stop
if m > -1 and gtIg[m] == 0 and gtIg[gind] == 1:
break
# continue to next gt unless better match made
if ious[dind, gind] < iou:
continue
# if match successful and best so far, store appropriately
iou = ious[dind, gind]
m = gind
# if match made store id of match for both dt and gt
if m == -1:
continue
dtIg[tind, dind] = gtIg[m]
dtm[tind, dind] = gt[m]["id"]
gtm[tind, m] = d["id"]
# set unmatched detections outside of area range to ignore
a = np.array([d["area"] < aRng[0] or d["area"] > aRng[1] for d in dt]).reshape(
(1, len(dt))
)
dtIg = np.logical_or(dtIg, np.logical_and(dtm == 0, np.repeat(a, T, 0)))
# store results for given image and category
return {
"image_id": imgId,
"category_id": catId,
"aRng": aRng,
"maxDet": maxDet,
"dtIds": [d["id"] for d in dt],
"gtIds": [g["id"] for g in gt],
"dtMatches": dtm,
"gtMatches": gtm,
"dtScores": [d["score"] for d in dt],
"gtIgnore": gtIg,
"dtIgnore": dtIg,
}
def accumulate(self, p=None):
"""
Accumulate per image evaluation results and store the result in self.eval
:param p: input params for evaluation
:return: None
"""
print("Accumulating evaluation results...")
tic = time.time()
if not self.evalImgs:
print("Please run evaluate() first")
# allows input customized parameters
if p is None:
p = self.params
p.catIds = p.catIds if p.useCats == 1 else [-1]
T = len(p.iouThrs)
R = len(p.recThrs)
K = len(p.catIds) if p.useCats else 1
A = len(p.areaRng)
M = len(p.maxDets)
precision = -np.ones(
(T, R, K, A, M)
) # -1 for the precision of absent categories
recall = -np.ones((T, K, A, M))
scores = -np.ones((T, R, K, A, M))
# create dictionary for future indexing
_pe = self._paramsEval
catIds = _pe.catIds if _pe.useCats else [-1]
setK = set(catIds)
setA = set(map(tuple, _pe.areaRng))
setM = set(_pe.maxDets)
setI = set(_pe.imgIds)
# get inds to evaluate
k_list = [n for n, k in enumerate(p.catIds) if k in setK]
m_list = [m for n, m in enumerate(p.maxDets) if m in setM]
a_list = [
n for n, a in enumerate(map(lambda x: tuple(x), p.areaRng)) if a in setA
]
i_list = [n for n, i in enumerate(p.imgIds) if i in setI]
I0 = len(_pe.imgIds)
A0 = len(_pe.areaRng)
# retrieve E at each category, area range, and max number of detections
for k, k0 in enumerate(k_list):
Nk = k0 * A0 * I0
for a, a0 in enumerate(a_list):
Na = a0 * I0
for m, maxDet in enumerate(m_list):
E = [self.evalImgs[Nk + Na + i] for i in i_list]
E = [e for e in E if not e is None]
if len(E) == 0:
continue
dtScores = np.concatenate([e["dtScores"][0:maxDet] for e in E])
# different sorting method generates slightly different results.
# mergesort is used to be consistent as Matlab implementation.
inds = np.argsort(-dtScores, kind="mergesort")
dtScoresSorted = dtScores[inds]
dtm = np.concatenate(
[e["dtMatches"][:, 0:maxDet] for e in E], axis=1
)[:, inds]
dtIg = np.concatenate(
[e["dtIgnore"][:, 0:maxDet] for e in E], axis=1
)[:, inds]
gtIg = np.concatenate([e["gtIgnore"] for e in E])
npig = np.count_nonzero(gtIg == 0)
if npig == 0:
continue
tps = np.logical_and(dtm, np.logical_not(dtIg))
fps = np.logical_and(np.logical_not(dtm), np.logical_not(dtIg))
tp_sum = np.cumsum(tps, axis=1).astype(dtype=dtype_float)
fp_sum = np.cumsum(fps, axis=1).astype(dtype=dtype_float)
for t, (tp, fp) in enumerate(zip(tp_sum, fp_sum)):
tp = np.array(tp)
fp = np.array(fp)
nd = len(tp)
rc = tp / npig
pr = tp / (fp + tp + np.spacing(1))
q = np.zeros((R,))
ss = np.zeros((R,))
if nd:
recall[t, k, a, m] = rc[-1]
else:
recall[t, k, a, m] = 0
# numpy is slow without cython optimization for accessing elements
# use python array gets significant speed improvement
pr = pr.tolist()
q = q.tolist()
for i in range(nd - 1, 0, -1):
if pr[i] > pr[i - 1]:
pr[i - 1] = pr[i]
inds = np.searchsorted(rc, p.recThrs, side="left")
try:
for ri, pi in enumerate(inds):
q[ri] = pr[pi]
ss[ri] = dtScoresSorted[pi]
except:
pass
precision[t, :, k, a, m] = np.array(q)
scores[t, :, k, a, m] = np.array(ss)
self.eval = {
"params": p,
"counts": [T, R, K, A, M],
"date": datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S"),
"precision": precision,
"recall": recall,
"scores": scores,
}
toc = time.time()
print("DONE (t={:0.2f}s).".format(toc - tic))
def summarize(self):
"""
Compute and display summary metrics for evaluation results.
Note this functin can *only* be applied on the default parameter setting
"""
def _summarize(ap=1, iouThr=None, areaRng="all", maxDets=100):
p = self.params
iStr = " {:<18} {} @[ IoU={:<9} | area={:>6s} | maxDets={:>3d} ] = {:0.3f}"
titleStr = "Average Precision" if ap == 1 else "Average Recall"
typeStr = "(AP)" if ap == 1 else "(AR)"
iouStr = (
"{:0.2f}:{:0.2f}".format(p.iouThrs[0], p.iouThrs[-1])
if iouThr is None
else "{:0.2f}".format(iouThr)
)
aind = [i for i, aRng in enumerate(p.areaRngLbl) if aRng == areaRng]
mind = [i for i, mDet in enumerate(p.maxDets) if mDet == maxDets]
if ap == 1:
# dimension of precision: [TxRxKxAxM]
s = self.eval["precision"]
# IoU
if iouThr is not None:
t = np.where(iouThr == p.iouThrs)[0]
s = s[t]
s = s[:, :, :, aind, mind]
else:
# dimension of recall: [TxKxAxM]
s = self.eval["recall"]
if iouThr is not None:
t = np.where(iouThr == p.iouThrs)[0]
s = s[t]
s = s[:, :, aind, mind]
if len(s[s > -1]) == 0:
mean_s = -1
else:
mean_s = np.mean(s[s > -1])
print(iStr.format(titleStr, typeStr, iouStr, areaRng, maxDets, mean_s))
return mean_s
def _summarizeDets():
stats = np.zeros((12,))
stats[0] = _summarize(1)
stats[1] = _summarize(1, iouThr=0.5, maxDets=self.params.maxDets[2])
stats[2] = _summarize(1, iouThr=0.75, maxDets=self.params.maxDets[2])
stats[3] = _summarize(1, areaRng="small", maxDets=self.params.maxDets[2])
stats[4] = _summarize(1, areaRng="medium", maxDets=self.params.maxDets[2])
stats[5] = _summarize(1, areaRng="large", maxDets=self.params.maxDets[2])
stats[6] = _summarize(0, maxDets=self.params.maxDets[0])
stats[7] = _summarize(0, maxDets=self.params.maxDets[1])
stats[8] = _summarize(0, maxDets=self.params.maxDets[2])
stats[9] = _summarize(0, areaRng="small", maxDets=self.params.maxDets[2])
stats[10] = _summarize(0, areaRng="medium", maxDets=self.params.maxDets[2])
stats[11] = _summarize(0, areaRng="large", maxDets=self.params.maxDets[2])
return stats
def _summarizeKps():
stats = np.zeros((10,))
stats[0] = _summarize(1, maxDets=20)
stats[1] = _summarize(1, maxDets=20, iouThr=0.5)
stats[2] = _summarize(1, maxDets=20, iouThr=0.75)
stats[3] = _summarize(1, maxDets=20, areaRng="medium")
stats[4] = _summarize(1, maxDets=20, areaRng="large")
stats[5] = _summarize(0, maxDets=20)
stats[6] = _summarize(0, maxDets=20, iouThr=0.5)
stats[7] = _summarize(0, maxDets=20, iouThr=0.75)
stats[8] = _summarize(0, maxDets=20, areaRng="medium")
stats[9] = _summarize(0, maxDets=20, areaRng="large")
return stats
if not self.eval:
raise Exception("Please run accumulate() first")
iouType = self.params.iouType
if iouType == "segm" or iouType == "bbox":
summarize = _summarizeDets
elif iouType == "keypoints":
summarize = _summarizeKps
self.stats = summarize()
def __str__(self):
self.summarize()
class Params:
"""
Params for coco evaluation api
"""
def setDetParams(self):
self.imgIds = []
self.catIds = []
# np.arange causes trouble. the data point on arange is slightly larger than the true value
self.iouThrs = np.linspace(
0.5, 0.95, int(np.round((0.95 - 0.5) / 0.05)) + 1, endpoint=True
)
self.recThrs = np.linspace(
0.0, 1.00, int(np.round((1.00 - 0.0) / 0.01)) + 1, endpoint=True
)
self.maxDets = [1, 10, 100]
self.areaRng = [
[0 ** 2, 1e5 ** 2],
[0 ** 2, 32 ** 2],
[32 ** 2, 96 ** 2],
[96 ** 2, 1e5 ** 2],
]
self.areaRngLbl = ["all", "small", "medium", "large"]
self.useCats = 1
def setKpParams(self):
self.imgIds = []
self.catIds = []
# np.arange causes trouble. the data point on arange is slightly larger than the true value
self.iouThrs = np.linspace(
0.5, 0.95, int(np.round((0.95 - 0.5) / 0.05)) + 1, endpoint=True
)
self.recThrs = np.linspace(
0.0, 1.00, int(np.round((1.00 - 0.0) / 0.01)) + 1, endpoint=True
)
self.maxDets = [20]
self.areaRng = [[0 ** 2, 1e5 ** 2], [32 ** 2, 96 ** 2], [96 ** 2, 1e5 ** 2]]
self.areaRngLbl = ["all", "medium", "large"]
self.useCats = 1
self.kpt_oks_sigmas = (
np.array(
[
0.26,
0.25,
0.25,
0.35,
0.35,
0.79,
0.79,
0.72,
0.72,
0.62,
0.62,
1.07,
1.07,
0.87,
0.87,
0.89,
0.89,
]
)
/ 10.0
)
def __init__(self, iouType="segm"):
if iouType == "bbox":
self.setDetParams()
else:
raise Exception("iouType not supported")
self.iouType = iouType
# useSegm is deprecated
self.useSegm = None
# This code is basically a copy and paste from the original cocoapi file:
# https://github.com/cocodataset/cocoapi/blob/master/PythonAPI/pycocotools/coco.py
# with the following changes:
# * Instead of receiving the path to the annotation file, it receives a json object.
# * Commented out all parts of code that depends on maskUtils, which is not needed
# for bounding box evaluation.
__author__ = "tylin"
__version__ = "2.0"
# Interface for accessing the Microsoft COCO dataset.
# Microsoft COCO is a large image dataset designed for object detection,
# segmentation, and caption generation. pycocotools is a Python API that
# assists in loading, parsing and visualizing the annotations in COCO.
# Please visit http://mscoco.org/ for more information on COCO, including
# for the data, paper, and tutorials. The exact format of the annotations
# is also described on the COCO website. For example usage of the pycocotools
# please see pycocotools_demo.ipynb. In addition to this API, please download both
# the COCO images and annotations in order to run the demo.
# An alternative to using the API is to load the annotations directly
# into Python dictionary
# Using the API provides additional utility functions. Note that this API
# supports both *instance* and *caption* annotations. In the case of
# captions not all functions are defined (e.g. categories are undefined).
# The following API functions are defined:
# COCO - COCO api class that loads COCO annotation file and prepare data structures.
# decodeMask - Decode binary mask M encoded via run-length encoding.
# encodeMask - Encode binary mask M using run-length encoding.
# getAnnIds - Get ann ids that satisfy given filter conditions.
# getCatIds - Get cat ids that satisfy given filter conditions.
# getImgIds - Get img ids that satisfy given filter conditions.
# loadAnns - Load anns with the specified ids.
# loadCats - Load cats with the specified ids.
# loadImgs - Load imgs with the specified ids.
# annToMask - Convert segmentation in an annotation to binary mask.
# showAnns - Display the specified annotations.
# loadRes - Load algorithm results and create API for accessing them.
# download - Download COCO images from mscoco.org server.
# Throughout the API "ann"=annotation, "cat"=category, and "img"=image.
# Help on each functions can be accessed by: "help COCO>function".
# See also COCO>decodeMask,
# COCO>encodeMask, COCO>getAnnIds, COCO>getCatIds,
# COCO>getImgIds, COCO>loadAnns, COCO>loadCats,
# COCO>loadImgs, COCO>annToMask, COCO>showAnns
# Microsoft COCO Toolbox. version 2.0
# Data, paper, and tutorials available at: http://mscoco.org/
# Code written by Piotr Dollar and Tsung-Yi Lin, 2014.
# Licensed under the Simplified BSD License [see bsd.txt]
import copy
import itertools
import json
# from . import mask as maskUtils
import os
import sys
import time
from collections import defaultdict
import matplotlib.pyplot as plt
import numpy as np
from matplotlib.collections import PatchCollection
from matplotlib.patches import Polygon
PYTHON_VERSION = sys.version_info[0]
if PYTHON_VERSION == 2:
from urllib import urlretrieve
elif PYTHON_VERSION == 3:
from urllib.request import urlretrieve
def _isArrayLike(obj):
return hasattr(obj, "__iter__") and hasattr(obj, "__len__")
class COCO:
def __init__(self, annotations=None):
"""
Constructor of Microsoft COCO helper class for reading and visualizing annotations.
:param annotation_file (str): location of annotation file
:param image_folder (str): location to the folder that hosts images.
:return:
"""
# load dataset
self.dataset, self.anns, self.cats, self.imgs = dict(), dict(), dict(), dict()
self.imgToAnns, self.catToImgs = defaultdict(list), defaultdict(list)
# Modified the original code to receive a json object instead of a path to a file
if annotations:
assert (
type(annotations) == dict
), f"annotation file format {type(annotations)} not supported."
self.dataset = annotations
self.createIndex()
def createIndex(self):
# create index
print("creating index...")
anns, cats, imgs = {}, {}, {}
imgToAnns, catToImgs = defaultdict(list), defaultdict(list)
if "annotations" in self.dataset:
for ann in self.dataset["annotations"]:
imgToAnns[ann["image_id"]].append(ann)
anns[ann["id"]] = ann
if "images" in self.dataset:
for img in self.dataset["images"]:
imgs[img["id"]] = img
if "categories" in self.dataset:
for cat in self.dataset["categories"]:
cats[cat["id"]] = cat
if "annotations" in self.dataset and "categories" in self.dataset:
for ann in self.dataset["annotations"]:
catToImgs[ann["category_id"]].append(ann["image_id"])
print("index created!")
# create class members
self.anns = anns
self.imgToAnns = imgToAnns
self.catToImgs = catToImgs
self.imgs = imgs
self.cats = cats
def info(self):
"""
Print information about the annotation file.
:return:
"""
for key, value in self.dataset["info"].items():
print("{}: {}".format(key, value))
def getAnnIds(self, imgIds=[], catIds=[], areaRng=[], iscrowd=None):
"""
Get ann ids that satisfy given filter conditions. default skips that filter
:param imgIds (int array) : get anns for given imgs
catIds (int array) : get anns for given cats
areaRng (float array) : get anns for given area range (e.g. [0 inf])
iscrowd (boolean) : get anns for given crowd label (False or True)
:return: ids (int array) : integer array of ann ids
"""
imgIds = imgIds if _isArrayLike(imgIds) else [imgIds]
catIds = catIds if _isArrayLike(catIds) else [catIds]
if len(imgIds) == len(catIds) == len(areaRng) == 0:
anns = self.dataset["annotations"]
else:
if not len(imgIds) == 0:
lists = [
self.imgToAnns[imgId] for imgId in imgIds if imgId in self.imgToAnns
]
anns = list(itertools.chain.from_iterable(lists))
else:
anns = self.dataset["annotations"]
anns = (
anns
if len(catIds) == 0
else [ann for ann in anns if ann["category_id"] in catIds]
)
anns = (
anns
if len(areaRng) == 0
else [
ann
for ann in anns
if ann["area"] > areaRng[0] and ann["area"] < areaRng[1]
]
)
if not iscrowd == None:
ids = [ann["id"] for ann in anns if ann["iscrowd"] == iscrowd]
else:
ids = [ann["id"] for ann in anns]
return ids
def getCatIds(self, catNms=[], supNms=[], catIds=[]):
"""
filtering parameters. default skips that filter.
:param catNms (str array) : get cats for given cat names
:param supNms (str array) : get cats for given supercategory names
:param catIds (int array) : get cats for given cat ids
:return: ids (int array) : integer array of cat ids
"""
catNms = catNms if _isArrayLike(catNms) else [catNms]
supNms = supNms if _isArrayLike(supNms) else [supNms]
catIds = catIds if _isArrayLike(catIds) else [catIds]
if len(catNms) == len(supNms) == len(catIds) == 0:
cats = self.dataset["categories"]
else:
cats = self.dataset["categories"]
cats = (
cats
if len(catNms) == 0
else [cat for cat in cats if cat["name"] in catNms]
)
cats = (
cats
if len(supNms) == 0
else [cat for cat in cats if cat["supercategory"] in supNms]
)
cats = (
cats
if len(catIds) == 0
else [cat for cat in cats if cat["id"] in catIds]
)
ids = [cat["id"] for cat in cats]
return ids
def getImgIds(self, imgIds=[], catIds=[]):
"""
Get img ids that satisfy given filter conditions.
:param imgIds (int array) : get imgs for given ids
:param catIds (int array) : get imgs with all given cats
:return: ids (int array) : integer array of img ids
"""
imgIds = imgIds if _isArrayLike(imgIds) else [imgIds]
catIds = catIds if _isArrayLike(catIds) else [catIds]
if len(imgIds) == len(catIds) == 0:
ids = self.imgs.keys()
else:
ids = set(imgIds)
for i, catId in enumerate(catIds):
if i == 0 and len(ids) == 0:
ids = set(self.catToImgs[catId])
else:
ids &= set(self.catToImgs[catId])
return list(ids)
def loadAnns(self, ids=[]):
"""
Load anns with the specified ids.
:param ids (int array) : integer ids specifying anns
:return: anns (object array) : loaded ann objects
"""
if _isArrayLike(ids):
return [self.anns[id] for id in ids]
elif type(ids) == int:
return [self.anns[ids]]
def loadCats(self, ids=[]):
"""
Load cats with the specified ids.
:param ids (int array) : integer ids specifying cats
:return: cats (object array) : loaded cat objects
"""
if _isArrayLike(ids):
return [self.cats[id] for id in ids]
elif type(ids) == int:
return [self.cats[ids]]
def loadImgs(self, ids=[]):
"""
Load anns with the specified ids.
:param ids (int array) : integer ids specifying img
:return: imgs (object array) : loaded img objects
"""
if _isArrayLike(ids):
return [self.imgs[id] for id in ids]
elif type(ids) == int:
return [self.imgs[ids]]
def showAnns(self, anns, draw_bbox=False):
"""
Display the specified annotations.
:param anns (array of object): annotations to display
:return: None
"""
if len(anns) == 0:
return 0
if "segmentation" in anns[0] or "keypoints" in anns[0]:
datasetType = "instances"
elif "caption" in anns[0]:
datasetType = "captions"
else:
raise Exception("datasetType not supported")
if datasetType == "instances":
ax = plt.gca()
ax.set_autoscale_on(False)
polygons = []
color = []
for ann in anns:
c = (np.random.random((1, 3)) * 0.6 + 0.4).tolist()[0]
if "segmentation" in ann:
if type(ann["segmentation"]) == list:
# polygon
for seg in ann["segmentation"]:
poly = np.array(seg).reshape((int(len(seg) / 2), 2))
polygons.append(Polygon(poly))
color.append(c)
else:
raise NotImplementedError(
"This type is not is not supported yet."
)
# # mask
# t = self.imgs[ann['image_id']]
# if type(ann['segmentation']['counts']) == list:
# rle = maskUtils.frPyObjects([ann['segmentation']], t['height'], t['width'])
# else:
# rle = [ann['segmentation']]
# m = maskUtils.decode(rle)
# img = np.ones( (m.shape[0], m.shape[1], 3) )
# if ann['iscrowd'] == 1:
# color_mask = np.array([2.0,166.0,101.0])/255
# if ann['iscrowd'] == 0:
# color_mask = np.random.random((1, 3)).tolist()[0]
# for i in range(3):
# img[:,:,i] = color_mask[i]
# ax.imshow(np.dstack( (img, m*0.5) ))
if "keypoints" in ann and type(ann["keypoints"]) == list:
# turn skeleton into zero-based index
sks = np.array(self.loadCats(ann["category_id"])[0]["skeleton"]) - 1
kp = np.array(ann["keypoints"])
x = kp[0::3]
y = kp[1::3]
v = kp[2::3]
for sk in sks:
if np.all(v[sk] > 0):
plt.plot(x[sk], y[sk], linewidth=3, color=c)
plt.plot(
x[v > 0],
y[v > 0],
"o",
markersize=8,
markerfacecolor=c,
markeredgecolor="k",
markeredgewidth=2,
)
plt.plot(
x[v > 1],
y[v > 1],
"o",
markersize=8,
markerfacecolor=c,
markeredgecolor=c,
markeredgewidth=2,
)
if draw_bbox:
[bbox_x, bbox_y, bbox_w, bbox_h] = ann["bbox"]
poly = [
[bbox_x, bbox_y],
[bbox_x, bbox_y + bbox_h],
[bbox_x + bbox_w, bbox_y + bbox_h],
[bbox_x + bbox_w, bbox_y],
]
np_poly = np.array(poly).reshape((4, 2))
polygons.append(Polygon(np_poly))
color.append(c)
p = PatchCollection(polygons, facecolor=color, linewidths=0, alpha=0.4)
ax.add_collection(p)
p = PatchCollection(
polygons, facecolor="none", edgecolors=color, linewidths=2
)
ax.add_collection(p)
elif datasetType == "captions":
for ann in anns:
print(ann["caption"])
def loadRes(self, resFile):
"""
Load result file and return a result api object.
:param resFile (str) : file name of result file
:return: res (obj) : result api object
"""
res = COCO()
res.dataset["images"] = [img for img in self.dataset["images"]]
print("Loading and preparing results...")
tic = time.time()
if type(resFile) == str or (PYTHON_VERSION == 2 and type(resFile) == unicode):
anns = json.load(open(resFile))
elif type(resFile) == np.ndarray:
anns = self.loadNumpyAnnotations(resFile)
else:
anns = resFile
assert type(anns) == list, "results in not an array of objects"
annsImgIds = [ann["image_id"] for ann in anns]
assert set(annsImgIds) == (
set(annsImgIds) & set(self.getImgIds())
), "Results do not correspond to current coco set"
if "caption" in anns[0]:
raise NotImplementedError("Evaluating caption is not supported yet.")
elif "bbox" in anns[0] and not anns[0]["bbox"] == []:
res.dataset["categories"] = copy.deepcopy(self.dataset["categories"])
for id, ann in enumerate(anns):
bb = ann["bbox"]
x1, x2, y1, y2 = [bb[0], bb[0] + bb[2], bb[1], bb[1] + bb[3]]
if not "segmentation" in ann:
ann["segmentation"] = [[x1, y1, x1, y2, x2, y2, x2, y1]]
ann["area"] = bb[2] * bb[3]
ann["id"] = id + 1
ann["iscrowd"] = 0
elif "segmentation" in anns[0]:
raise NotImplementedError("Evaluating caption is not supported yet.")
elif "keypoints" in anns[0]:
raise NotImplementedError("Evaluating caption is not supported yet.")
print("DONE (t={:0.2f}s)".format(time.time() - tic))
res.dataset["annotations"] = anns
res.createIndex()
return res
def download(self, tarDir=None, imgIds=[]):
"""
Download COCO images from mscoco.org server.
:param tarDir (str): COCO results directory name
imgIds (list): images to be downloaded
:return:
"""
if tarDir is None:
print("Please specify target directory")
return -1
if len(imgIds) == 0:
imgs = self.imgs.values()
else:
imgs = self.loadImgs(imgIds)
N = len(imgs)
if not os.path.exists(tarDir):
os.makedirs(tarDir)
for i, img in enumerate(imgs):
tic = time.time()
fname = os.path.join(tarDir, img["file_name"])
if not os.path.exists(fname):
urlretrieve(img["coco_url"], fname)
print(
"downloaded {}/{} images (t={:0.1f}s)".format(i, N, time.time() - tic)
)
def loadNumpyAnnotations(self, data):
"""
Convert result data from a numpy array [Nx7] where each row contains {imageID,x1,y1,w,h,score,class}
:param data (numpy.ndarray)
:return: annotations (python nested list)
"""
print("Converting ndarray to lists...")
assert type(data) == np.ndarray
print(data.shape)
assert data.shape[1] == 7
N = data.shape[0]
ann = []
for i in range(N):
if i % 1000000 == 0:
print("{}/{}".format(i, N))
ann += [
{
"image_id": int(data[i, 0]),
"bbox": [data[i, 1], data[i, 2], data[i, 3], data[i, 4]],
"score": data[i, 5],
"category_id": int(data[i, 6]),
}
]
return ann
def annToRLE(self, ann):
"""
Convert annotation which can be polygons, uncompressed RLE to RLE.
:return: binary mask (numpy 2D array)
"""
t = self.imgs[ann["image_id"]]
h, w = t["height"], t["width"]
segm = ann["segmentation"]
if type(segm) == list:
raise NotImplementedError("This type is not is not supported yet.")
# polygon -- a single object might consist of multiple parts
# we merge all parts into one mask rle code
# rles = maskUtils.frPyObjects(segm, h, w)
# rle = maskUtils.merge(rles)
elif type(segm["counts"]) == list:
raise NotImplementedError("This type is not is not supported yet.")
# uncompressed RLE
# rle = maskUtils.frPyObjects(segm, h, w)
else:
# rle
rle = ann["segmentation"]
return rle
def annToMask(self, ann):
"""
Convert annotation which can be polygons, uncompressed RLE, or RLE to binary mask.
:return: binary mask (numpy 2D array)
"""
rle = self.annToRLE(ann)
# m = maskUtils.decode(rle)
raise NotImplementedError("This type is not is not supported yet.")
return m
# Typings
_TYPING_BOX = Tuple[float, float, float, float]
_TYPING_SCORES = List[float]
_TYPING_LABELS = List[int]
_TYPING_BOXES = List[_TYPING_BOX]
_TYPING_PRED_REF = Union[_TYPING_SCORES, _TYPING_LABELS, _TYPING_BOXES]
_TYPING_PREDICTION = Dict[str, _TYPING_PRED_REF]
_TYPING_REFERENCE = Dict[str, _TYPING_PRED_REF]
_TYPING_PREDICTIONS = Dict[int, _TYPING_PREDICTION]
def convert_to_xywh(boxes: torch.Tensor) -> torch.Tensor:
"""
Convert bounding boxes from (xmin, ymin, xmax, ymax) format to (x, y, width, height) format.
Args:
boxes (torch.Tensor): Tensor of shape (N, 4) representing bounding boxes in \
(xmin, ymin, xmax, ymax) format.
Returns:
torch.Tensor: Tensor of shape (N, 4) representing bounding boxes in (x, y, width, height) \
format.
"""
xmin, ymin, xmax, ymax = boxes.unbind(1)
return torch.stack((xmin, ymin, xmax - xmin, ymax - ymin), dim=1)
def create_common_coco_eval(
coco_eval: COCOeval, img_ids: List[int], eval_imgs: np.ndarray
) -> None:
"""
Create a common COCO evaluation by merging image IDs and evaluation images into the \
coco_eval object.
Args:
coco_eval: COCOeval evaluation object.
img_ids (List[int]): Tensor of image IDs.
eval_imgs (torch.Tensor): Tensor of evaluation images.
"""
img_ids, eval_imgs = merge(img_ids, eval_imgs)
img_ids = list(img_ids)
eval_imgs = list(eval_imgs.flatten())
coco_eval.evalImgs = eval_imgs
coco_eval.params.imgIds = img_ids
coco_eval._paramsEval = copy.deepcopy(coco_eval.params)
def merge(img_ids: List[int], eval_imgs: np.ndarray) -> Tuple[np.ndarray, np.ndarray]:
"""
Merge image IDs and evaluation images from different processes.
Args:
img_ids (List[int]): List of image ID arrays from different processes.
eval_imgs (np.ndarray): Evaluation images from different processes.
Returns:
Tuple[np.ndarray, np.ndarray]: Merged image IDs and evaluation images.
"""
all_img_ids = all_gather(img_ids)
all_eval_imgs = all_gather(eval_imgs)
merged_img_ids = []
for p in all_img_ids:
merged_img_ids.extend(p)
merged_eval_imgs = []
for p in all_eval_imgs:
merged_eval_imgs.append(p)
merged_img_ids = np.array(merged_img_ids)
merged_eval_imgs = np.concatenate(merged_eval_imgs, 2)
# keep only unique (and in sorted order) images
merged_img_ids, idx = np.unique(merged_img_ids, return_index=True)
merged_eval_imgs = merged_eval_imgs[..., idx]
return merged_img_ids, merged_eval_imgs
def all_gather(data: List[int]) -> List[List[int]]:
"""
Run all_gather on arbitrary picklable data (not necessarily tensors).
Args:
data (List[int]): any picklable object
Returns:
List[List[int]]: list of data gathered from each rank
"""
world_size = get_world_size()
if world_size == 1:
return [data]
# serialized to a Tensor
buffer = pickle.dumps(data)
storage = torch.ByteStorage.from_buffer(buffer)
tensor = torch.ByteTensor(storage).to("cuda")
# obtain Tensor size of each rank
local_size = torch.tensor([tensor.numel()], device="cuda")
size_list = [torch.tensor([0], device="cuda") for _ in range(world_size)]
dist.all_gather(size_list, local_size)
size_list = [int(size.item()) for size in size_list]
max_size = max(size_list)
# receiving Tensor from all ranks
# we pad the tensor because torch all_gather does not support
# gathering tensors of different shapes
tensor_list = []
for _ in size_list:
tensor_list.append(torch.empty((max_size,), dtype=torch.uint8, device="cuda"))
if local_size != max_size:
padding = torch.empty(
size=(max_size - local_size,), dtype=torch.uint8, device="cuda"
)
tensor = torch.cat((tensor, padding), dim=0)
dist.all_gather(tensor_list, tensor)
data_list = []
for size, tensor in zip(size_list, tensor_list):
buffer = tensor.cpu().numpy().tobytes()[:size]
data_list.append(pickle.loads(buffer))
return data_list
def get_world_size() -> int:
"""
Get the number of processes in the distributed environment.
Returns:
int: Number of processes.
"""
if not is_dist_avail_and_initialized():
return 1
return dist.get_world_size()
def is_dist_avail_and_initialized() -> bool:
"""
Check if distributed environment is available and initialized.
Returns:
bool: True if distributed environment is available and initialized, False otherwise.
"""
return dist.is_available() and dist.is_initialized()
import contextlib
import copy
import os
from typing import Dict, List, Union
import numpy as np
import torch
_SUPPORTED_TYPES = ["bbox"]
class COCOEvaluator(object):
"""
Class to perform evaluation for the COCO dataset.
"""
def __init__(self, coco_gt: COCO, iou_types: List[str] = ["bbox"]):
"""
Initializes COCOEvaluator with the ground truth COCO dataset and IoU types.
Args:
coco_gt: The ground truth COCO dataset.
iou_types: Intersection over Union (IoU) types for evaluation (Supported: "bbox").
"""
self.coco_gt = copy.deepcopy(coco_gt)
self.coco_eval = {}
for iou_type in iou_types:
assert iou_type in _SUPPORTED_TYPES, ValueError(
f"IoU type not supported {iou_type}"
)
self.coco_eval[iou_type] = COCOeval(self.coco_gt, iouType=iou_type)
self.iou_types = iou_types
self.img_ids = []
self.eval_imgs = {k: [] for k in iou_types}
def update(self, predictions: _TYPING_PREDICTIONS) -> None:
"""
Update the evaluator with new predictions.
Args:
predictions: The predictions to update.
"""
img_ids = list(np.unique(list(predictions.keys())))
self.img_ids.extend(img_ids)
for iou_type in self.iou_types:
results = self.prepare(predictions, iou_type)
# suppress pycocotools prints
with open(os.devnull, "w") as devnull:
with contextlib.redirect_stdout(devnull):
coco_dt = COCO.loadRes(self.coco_gt, results) if results else COCO()
coco_eval = self.coco_eval[iou_type]
coco_eval.cocoDt = coco_dt
coco_eval.params.imgIds = list(img_ids)
eval_imgs = coco_eval.evaluate()
self.eval_imgs[iou_type].append(eval_imgs)
def synchronize_between_processes(self) -> None:
"""
Synchronizes evaluation images between processes.
"""
for iou_type in self.iou_types:
self.eval_imgs[iou_type] = np.concatenate(self.eval_imgs[iou_type], 2)
create_common_coco_eval(
self.coco_eval[iou_type], self.img_ids, self.eval_imgs[iou_type]
)
def accumulate(self) -> None:
"""
Accumulates the evaluation results.
"""
for coco_eval in self.coco_eval.values():
coco_eval.accumulate()
def summarize(self) -> None:
"""
Prints the IoU metric and summarizes the evaluation results.
"""
for iou_type, coco_eval in self.coco_eval.items():
print("IoU metric: {}".format(iou_type))
coco_eval.summarize()
def prepare(
self, predictions: _TYPING_PREDICTIONS, iou_type: str
) -> List[Dict[str, Union[int, _TYPING_BOX, float]]]:
"""
Prepares the predictions for COCO detection.
Args:
predictions: The predictions to prepare.
iou_type: The Intersection over Union (IoU) type for evaluation.
Returns:
A dictionary with the prepared predictions.
"""
if iou_type == "bbox":
return self.prepare_for_coco_detection(predictions)
else:
raise ValueError(f"IoU type not supported {iou_type}")
def _post_process_stats(
self, stats, coco_eval_object, iou_type="bbox"
) -> Dict[str, float]:
"""
Prepares the predictions for COCO detection.
Args:
predictions: The predictions to prepare.
iou_type: The Intersection over Union (IoU) type for evaluation.
Returns:
A dictionary with the prepared predictions.
"""
if iou_type not in _SUPPORTED_TYPES:
raise ValueError(f"iou_type '{iou_type}' not supported")
current_max_dets = coco_eval_object.params.maxDets
index_to_title = {
"bbox": {
0: f"AP-IoU=0.50:0.95-area=all-maxDets={current_max_dets[2]}",
1: f"AP-IoU=0.50-area=all-maxDets={current_max_dets[2]}",
2: f"AP-IoU=0.75-area=all-maxDets={current_max_dets[2]}",
3: f"AP-IoU=0.50:0.95-area=small-maxDets={current_max_dets[2]}",
4: f"AP-IoU=0.50:0.95-area=medium-maxDets={current_max_dets[2]}",
5: f"AP-IoU=0.50:0.95-area=large-maxDets={current_max_dets[2]}",
6: f"AR-IoU=0.50:0.95-area=all-maxDets={current_max_dets[0]}",
7: f"AR-IoU=0.50:0.95-area=all-maxDets={current_max_dets[1]}",
8: f"AR-IoU=0.50:0.95-area=all-maxDets={current_max_dets[2]}",
9: f"AR-IoU=0.50:0.95-area=small-maxDets={current_max_dets[2]}",
10: f"AR-IoU=0.50:0.95-area=medium-maxDets={current_max_dets[2]}",
11: f"AR-IoU=0.50:0.95-area=large-maxDets={current_max_dets[2]}",
},
"keypoints": {
0: "AP-IoU=0.50:0.95-area=all-maxDets=20",
1: "AP-IoU=0.50-area=all-maxDets=20",
2: "AP-IoU=0.75-area=all-maxDets=20",
3: "AP-IoU=0.50:0.95-area=medium-maxDets=20",
4: "AP-IoU=0.50:0.95-area=large-maxDets=20",
5: "AR-IoU=0.50:0.95-area=all-maxDets=20",
6: "AR-IoU=0.50-area=all-maxDets=20",
7: "AR-IoU=0.75-area=all-maxDets=20",
8: "AR-IoU=0.50:0.95-area=medium-maxDets=20",
9: "AR-IoU=0.50:0.95-area=large-maxDets=20",
},
}
output_dict: Dict[str, float] = {}
for index, stat in enumerate(stats):
output_dict[index_to_title[iou_type][index]] = stat
return output_dict
def get_results(self) -> Dict[str, Dict[str, float]]:
"""
Gets the results of the COCO evaluation.
Returns:
A dictionary with the results of the COCO evaluation.
"""
output_dict = {}
for iou_type, coco_eval in self.coco_eval.items():
if iou_type == "segm":
iou_type = "bbox"
output_dict[f"iou_{iou_type}"] = self._post_process_stats(
coco_eval.stats, coco_eval, iou_type
)
return output_dict
def prepare_for_coco_detection(
self, predictions: _TYPING_PREDICTIONS
) -> List[Dict[str, Union[int, _TYPING_BOX, float]]]:
"""
Prepares the predictions for COCO detection.
Args:
predictions: The predictions to prepare.
Returns:
A list of dictionaries with the prepared predictions.
"""
coco_results = []
for original_id, prediction in predictions.items():
if len(prediction) == 0:
continue
boxes = prediction["boxes"]
if len(boxes) == 0:
continue
if not isinstance(boxes, torch.Tensor):
boxes = torch.as_tensor(boxes)
boxes = boxes.tolist()
scores = prediction["scores"]
if not isinstance(scores, list):
scores = scores.tolist()
labels = prediction["labels"]
if not isinstance(labels, list):
labels = prediction["labels"].tolist()
coco_results.extend(
[
{
"image_id": original_id,
"category_id": labels[k],
"bbox": box,
"score": scores[k],
}
for k, box in enumerate(boxes)
]
)
return coco_results
_DESCRIPTION = "This class evaluates object detection models using the COCO dataset \
and its evaluation metrics."
_HOMEPAGE = "https://cocodataset.org"
_CITATION = """
@misc{lin2015microsoft, \
title={Microsoft COCO: Common Objects in Context},
author={Tsung-Yi Lin and Michael Maire and Serge Belongie and Lubomir Bourdev and \
Ross Girshick and James Hays and Pietro Perona and Deva Ramanan and C. Lawrence Zitnick \
and Piotr Dollár},
year={2015},
eprint={1405.0312},
archivePrefix={arXiv},
primaryClass={cs.CV}
}
"""
_REFERENCE_URLS = [
"https://ieeexplore.ieee.org/abstract/document/9145130",
"https://www.mdpi.com/2079-9292/10/3/279",
"https://cocodataset.org/#detection-eval",
]
_KWARGS_DESCRIPTION = """\
Computes COCO metrics for object detection: AP(mAP) and its variants.
Args:
coco (COCO): COCO Evaluator object for evaluating predictions.
**kwargs: Additional keyword arguments forwarded to evaluate.Metrics.
"""
class EvaluateObjectDetection(evaluate.Metric):
"""
Class for evaluating object detection models.
"""
def __init__(self, json_gt: Union[Path, Dict], iou_type: str = "bbox", **kwargs):
"""
Initializes the EvaluateObjectDetection class.
Args:
json_gt: JSON with ground-truth annotations in COCO format.
# coco_groundtruth (COCO): COCO Evaluator object for evaluating predictions.
**kwargs: Additional keyword arguments forwarded to evaluate.Metrics.
"""
super().__init__(**kwargs)
# Create COCO object from ground-truth annotations
if isinstance(json_gt, Path):
assert json_gt.exists(), f"Path {json_gt} does not exist."
with open(json_gt) as f:
json_data = json.load(f)
elif isinstance(json_gt, dict):
json_data = json_gt
coco = COCO(json_data)
self.coco_evaluator = COCOEvaluator(coco, [iou_type])
def remove_classes(self, classes_to_remove: List[str]):
to_remove = [c.upper() for c in classes_to_remove]
cats = {}
for id, cat in self.coco_evaluator.coco_eval["bbox"].cocoGt.cats.items():
if cat["name"].upper() not in to_remove:
cats[id] = cat
self.coco_evaluator.coco_eval["bbox"].cocoGt.cats = cats
self.coco_evaluator.coco_gt.cats = cats
self.coco_evaluator.coco_gt.dataset["categories"] = list(cats.values())
self.coco_evaluator.coco_eval["bbox"].params.catIds = [c["id"] for c in cats.values()]
def _info(self):
"""
Returns the MetricInfo object with information about the module.
Returns:
evaluate.MetricInfo: Metric information object.
"""
return evaluate.MetricInfo(
module_type="metric",
description=_DESCRIPTION,
citation=_CITATION,
inputs_description=_KWARGS_DESCRIPTION,
# This defines the format of each prediction and reference
features=datasets.Features(
{
"predictions": [
datasets.Features(
{
"scores": datasets.Sequence(datasets.Value("float")),
"labels": datasets.Sequence(datasets.Value("int64")),
"boxes": datasets.Sequence(
datasets.Sequence(datasets.Value("float"))
),
}
)
],
"references": [
datasets.Features(
{
"image_id": datasets.Sequence(datasets.Value("int64")),
}
)
],
}
),
# Homepage of the module for documentation
homepage=_HOMEPAGE,
# Additional links to the codebase or references
reference_urls=_REFERENCE_URLS,
)
def _preprocess(
self, predictions: List[Dict[str, torch.Tensor]]
) -> List[_TYPING_PREDICTION]:
"""
Preprocesses the predictions before computing the scores.
Args:
predictions (List[Dict[str, torch.Tensor]]): A list of prediction dicts.
Returns:
List[_TYPING_PREDICTION]: A list of preprocessed prediction dicts.
"""
processed_predictions = []
for pred in predictions:
processed_pred: _TYPING_PREDICTION = {}
for k, val in pred.items():
if isinstance(val, torch.Tensor):
val = val.detach().cpu().tolist()
if k == "labels":
val = list(map(int, val))
processed_pred[k] = val
processed_predictions.append(processed_pred)
return processed_predictions
def _clear_predictions(self, predictions):
# Remove unnecessary keys from predictions
required = ["scores", "labels", "boxes"]
ret = []
for prediction in predictions:
ret.append({k: v for k, v in prediction.items() if k in required})
return ret
def _clear_references(self, references):
required = [""]
ret = []
for ref in references:
ret.append({k: v for k, v in ref.items() if k in required})
return ret
def add(self, *, prediction=None, reference=None, **kwargs):
"""
Preprocesses the predictions and references and calls the parent class function.
Args:
prediction: A list of prediction dicts.
reference: A list of reference dicts.
**kwargs: Additional keyword arguments.
"""
if prediction is not None:
prediction = self._clear_predictions(prediction)
prediction = self._preprocess(prediction)
res = {} # {image_id} : prediction
for output, target in zip(prediction, reference):
res[target["image_id"][0]] = output
self.coco_evaluator.update(res)
super(evaluate.Metric, self).add(prediction=prediction, references=reference, **kwargs)
def _compute(
self,
predictions: List[List[_TYPING_PREDICTION]],
references: List[List[_TYPING_REFERENCE]],
) -> Dict[str, Dict[str, float]]:
"""
Returns the evaluation scores.
Args:
predictions (List[List[_TYPING_PREDICTION]]): A list of predictions.
references (List[List[_TYPING_REFERENCE]]): A list of references.
Returns:
Dict: A dictionary containing evaluation scores.
"""
print("Synchronizing processes")
self.coco_evaluator.synchronize_between_processes()
print("Accumulating values")
self.coco_evaluator.accumulate()
print("Summarizing results")
self.coco_evaluator.summarize()
stats = self.coco_evaluator.get_results()
return stats
|