Commit
·
582c752
1
Parent(s):
447c533
Cambios de carpeta, modelo para gradio
Browse files
app.py
CHANGED
@@ -1,6 +1,5 @@
|
|
1 |
import gradio as gr
|
2 |
-
|
3 |
-
from loading import load_model
|
4 |
|
5 |
# Constantes que definen los límites mínimo y máximo para los sliders de Gradio
|
6 |
MIN_CONF, MAX_CONF = 0, 1
|
@@ -27,23 +26,10 @@ confidence_slider = gr.Slider(minimum=MIN_POS, maximum=MAX_POS, value=3, step=1,
|
|
27 |
|
28 |
# Creación de la interfaz de Gradio
|
29 |
demo = gr.Interface(fn=process_image,
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
|
36 |
-
demo.queue().launch()
|
37 |
-
|
38 |
-
|
39 |
-
# # Iniciar la aplicación FastAPI
|
40 |
-
# if __name__ == "__main__":
|
41 |
-
# import uvicorn
|
42 |
-
# uvicorn.run(app, host="0.0.0.0", port=8000)
|
43 |
-
|
44 |
-
# Dependencias necesarias:
|
45 |
-
# pip install fastapi uvicorn
|
46 |
-
# pip install --upgrade gradio
|
47 |
-
|
48 |
-
# Para ejecutar la aplicación:
|
49 |
-
# uvicorn main:app --reload
|
|
|
1 |
import gradio as gr
|
2 |
+
from utils.loading import load_model
|
|
|
3 |
|
4 |
# Constantes que definen los límites mínimo y máximo para los sliders de Gradio
|
5 |
MIN_CONF, MAX_CONF = 0, 1
|
|
|
26 |
|
27 |
# Creación de la interfaz de Gradio
|
28 |
demo = gr.Interface(fn=process_image,
|
29 |
+
inputs=[gr.Image(), pos_slider, confidence_slider],
|
30 |
+
outputs=gr.Image(),
|
31 |
+
title="Pose Detection App",
|
32 |
+
description="Ajusta los parámetros y carga una imagen para detectar poses.",
|
33 |
+
allow_flagging="never")
|
34 |
|
35 |
+
demo.queue().launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
pose_landmarker_heavy.task → model/pose_landmarker_heavy.task
RENAMED
File without changes
|
loading.py → utils/loading.py
RENAMED
@@ -6,7 +6,7 @@ from mediapipe.tasks import python
|
|
6 |
from mediapipe.tasks.python import vision
|
7 |
|
8 |
# Crear un objeto PoseLandmarker
|
9 |
-
model_asset_path = 'pose_landmarker_heavy.task'
|
10 |
base_options = python.BaseOptions(model_asset_path, delegate=python.BaseOptions.Delegate.CPU)
|
11 |
|
12 |
def draw_landmarks_on_image(rgb_image, detection_result):
|
|
|
6 |
from mediapipe.tasks.python import vision
|
7 |
|
8 |
# Crear un objeto PoseLandmarker
|
9 |
+
model_asset_path = 'model/pose_landmarker_heavy.task'
|
10 |
base_options = python.BaseOptions(model_asset_path, delegate=python.BaseOptions.Delegate.CPU)
|
11 |
|
12 |
def draw_landmarks_on_image(rgb_image, detection_result):
|