AleNunezArroyo commited on
Commit
4455a83
·
1 Parent(s): 2d0567e

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +36 -133
app.py CHANGED
@@ -1,146 +1,49 @@
1
  import gradio as gr
2
  import numpy as np
3
- import random
4
- from diffusers import DiffusionPipeline
5
- import torch
6
 
7
- device = "cuda" if torch.cuda.is_available() else "cpu"
 
 
8
 
9
- if torch.cuda.is_available():
10
- torch.cuda.max_memory_allocated(device=device)
11
- pipe = DiffusionPipeline.from_pretrained("stabilityai/sdxl-turbo", torch_dtype=torch.float16, variant="fp16", use_safetensors=True)
12
- pipe.enable_xformers_memory_efficient_attention()
13
- pipe = pipe.to(device)
14
- else:
15
- pipe = DiffusionPipeline.from_pretrained("stabilityai/sdxl-turbo", use_safetensors=True)
16
- pipe = pipe.to(device)
17
 
18
- MAX_SEED = np.iinfo(np.int32).max
19
- MAX_IMAGE_SIZE = 1024
 
 
20
 
21
- def infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps):
 
 
 
 
22
 
23
- if randomize_seed:
24
- seed = random.randint(0, MAX_SEED)
25
-
26
- generator = torch.Generator().manual_seed(seed)
27
-
28
- image = pipe(
29
- prompt = prompt,
30
- negative_prompt = negative_prompt,
31
- guidance_scale = guidance_scale,
32
- num_inference_steps = num_inference_steps,
33
- width = width,
34
- height = height,
35
- generator = generator
36
- ).images[0]
37
-
38
- return image
39
 
40
- examples = [
41
- "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
42
- "An astronaut riding a green horse",
43
- "A delicious ceviche cheesecake slice",
44
- ]
 
 
45
 
46
- css="""
47
- #col-container {
48
- margin: 0 auto;
49
- max-width: 520px;
50
- }
51
- """
52
 
53
- if torch.cuda.is_available():
54
- power_device = "GPU"
55
- else:
56
- power_device = "CPU"
57
 
58
- with gr.Blocks(css=css) as demo:
59
-
60
- with gr.Column(elem_id="col-container"):
61
- gr.Markdown(f"""
62
- # Text-to-Image Gradio Template
63
- Currently running on {power_device}.
64
- """)
65
-
66
- with gr.Row():
67
-
68
- prompt = gr.Text(
69
- label="Prompt",
70
- show_label=False,
71
- max_lines=1,
72
- placeholder="Enter your prompt",
73
- container=False,
74
- )
75
-
76
- run_button = gr.Button("Run", scale=0)
77
-
78
- result = gr.Image(label="Result", show_label=False)
79
 
80
- with gr.Accordion("Advanced Settings", open=False):
81
-
82
- negative_prompt = gr.Text(
83
- label="Negative prompt",
84
- max_lines=1,
85
- placeholder="Enter a negative prompt",
86
- visible=False,
87
- )
88
-
89
- seed = gr.Slider(
90
- label="Seed",
91
- minimum=0,
92
- maximum=MAX_SEED,
93
- step=1,
94
- value=0,
95
- )
96
-
97
- randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
98
-
99
- with gr.Row():
100
-
101
- width = gr.Slider(
102
- label="Width",
103
- minimum=256,
104
- maximum=MAX_IMAGE_SIZE,
105
- step=32,
106
- value=512,
107
- )
108
-
109
- height = gr.Slider(
110
- label="Height",
111
- minimum=256,
112
- maximum=MAX_IMAGE_SIZE,
113
- step=32,
114
- value=512,
115
- )
116
-
117
- with gr.Row():
118
-
119
- guidance_scale = gr.Slider(
120
- label="Guidance scale",
121
- minimum=0.0,
122
- maximum=10.0,
123
- step=0.1,
124
- value=0.0,
125
- )
126
-
127
- num_inference_steps = gr.Slider(
128
- label="Number of inference steps",
129
- minimum=1,
130
- maximum=12,
131
- step=1,
132
- value=2,
133
- )
134
-
135
- gr.Examples(
136
- examples = examples,
137
- inputs = [prompt]
138
- )
139
 
140
- run_button.click(
141
- fn = infer,
142
- inputs = [prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
143
- outputs = [result]
144
- )
145
-
146
- demo.queue().launch()
 
1
  import gradio as gr
2
  import numpy as np
3
+ from loading import load_model
 
 
4
 
5
+ # Constantes que definen los límites mínimo y máximo para los sliders de Gradio
6
+ MIN_CONF, MAX_CONF = 0, 1
7
+ MIN_POS, MAX_POS = 1, 5
8
 
9
+ def process_image(input_img, pos, confidence):
10
+ """
11
+ Aplica el modelo de pose en la imagen de entrada.
 
 
 
 
 
12
 
13
+ Args:
14
+ input_img (np.ndarray): La imagen de entrada.
15
+ pos (float): Confianza mínima para la detección de poses.
16
+ confidence (int): Número máximo de poses a detectar.
17
 
18
+ Returns:
19
+ np.ndarray: Imagen anotada con los resultados de la detección.
20
+ """
21
+ img = load_model(input_img, float(pos), int(confidence))
22
+ return img
23
 
24
+ # Definición de los sliders para la interfaz de Gradio
25
+ pos_slider = gr.Slider(minimum=MIN_CONF, maximum=MAX_CONF, value=0.5, step=0.1, label="Confianza de Detección", interactive=True)
26
+ confidence_slider = gr.Slider(minimum=MIN_POS, maximum=MAX_POS, value=3, step=1, label="Número de Poses", interactive=True)
 
 
 
 
 
 
 
 
 
 
 
 
 
27
 
28
+ # Creación de la interfaz de Gradio
29
+ demo = gr.Interface(fn=process_image,
30
+ inputs=[gr.Image(), pos_slider, confidence_slider],
31
+ outputs=gr.Image(),
32
+ title="Pose Detection App",
33
+ description="Ajusta los parámetros y carga una imagen para detectar poses.",
34
+ allow_flagging="never")
35
 
36
+ demo.queue().launch()
 
 
 
 
 
37
 
 
 
 
 
38
 
39
+ # # Iniciar la aplicación FastAPI
40
+ # if __name__ == "__main__":
41
+ # import uvicorn
42
+ # uvicorn.run(app, host="0.0.0.0", port=8000)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
43
 
44
+ # Dependencias necesarias:
45
+ # pip install fastapi uvicorn
46
+ # pip install --upgrade gradio
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
47
 
48
+ # Para ejecutar la aplicación:
49
+ # uvicorn main:app --reload