Commit
·
2d0567e
1
Parent(s):
ff8dc11
Create loading.py
Browse files- loading.py +67 -0
loading.py
ADDED
@@ -0,0 +1,67 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import mediapipe as mp
|
3 |
+
from mediapipe import solutions
|
4 |
+
from mediapipe.framework.formats import landmark_pb2
|
5 |
+
from mediapipe.tasks import python
|
6 |
+
from mediapipe.tasks.python import vision
|
7 |
+
|
8 |
+
# Crear un objeto PoseLandmarker
|
9 |
+
model_asset_path = 'pose_landmarker_heavy.task'
|
10 |
+
base_options = python.BaseOptions(model_asset_path, delegate=python.BaseOptions.Delegate.CPU)
|
11 |
+
|
12 |
+
def draw_landmarks_on_image(rgb_image, detection_result):
|
13 |
+
"""
|
14 |
+
Dibuja los puntos de referencia de la pose en la imagen.
|
15 |
+
|
16 |
+
Args:
|
17 |
+
rgb_image (np.ndarray): Imagen RGB de entrada.
|
18 |
+
detection_result: Resultado de la detección de pose.
|
19 |
+
|
20 |
+
Returns:
|
21 |
+
np.ndarray: Imagen anotada con los puntos de referencia de la pose.
|
22 |
+
"""
|
23 |
+
pose_landmarks_list = detection_result.pose_landmarks
|
24 |
+
annotated_image = np.copy(rgb_image)
|
25 |
+
# Recorrer las poses detectadas para visualizarlas
|
26 |
+
for pose_landmarks in pose_landmarks_list:
|
27 |
+
# Dibujar los puntos de referencia de la pose
|
28 |
+
pose_landmarks_proto = landmark_pb2.NormalizedLandmarkList()
|
29 |
+
pose_landmarks_proto.landmark.extend([
|
30 |
+
landmark_pb2.NormalizedLandmark(x=landmark.x, y=landmark.y, z=landmark.z) for landmark in pose_landmarks])
|
31 |
+
solutions.drawing_utils.draw_landmarks(
|
32 |
+
annotated_image,
|
33 |
+
pose_landmarks_proto,
|
34 |
+
solutions.pose.POSE_CONNECTIONS,
|
35 |
+
solutions.drawing_styles.get_default_pose_landmarks_style())
|
36 |
+
return annotated_image
|
37 |
+
|
38 |
+
def load_model(input_img, pos, confidence):
|
39 |
+
"""
|
40 |
+
Carga el modelo de detección de pose y lo aplica a la imagen de entrada.
|
41 |
+
|
42 |
+
Args:
|
43 |
+
input_img (np.ndarray): La imagen de entrada.
|
44 |
+
pos (float): Confianza mínima para la detección de poses.
|
45 |
+
confidence (int): Número máximo de poses a detectar.
|
46 |
+
|
47 |
+
Returns:
|
48 |
+
np.ndarray: Imagen anotada con los resultados de la detección de poses.
|
49 |
+
"""
|
50 |
+
# Configuración del objeto PoseLandmarker con parámetros própios
|
51 |
+
options = vision.PoseLandmarkerOptions(
|
52 |
+
base_options=base_options,
|
53 |
+
num_poses=confidence,
|
54 |
+
min_pose_detection_confidence=pos,
|
55 |
+
min_pose_presence_confidence=pos,
|
56 |
+
min_tracking_confidence=pos)
|
57 |
+
detector = vision.PoseLandmarker.create_from_options(options)
|
58 |
+
|
59 |
+
rgb_frame = mp.Image(image_format=mp.ImageFormat.SRGB, data=input_img)
|
60 |
+
|
61 |
+
# Detectar los puntos de referencia de la pose en la imagen de entrada
|
62 |
+
detection_result = detector.detect(rgb_frame)
|
63 |
+
|
64 |
+
# Procesar el resultado de la detección y visualizarlo
|
65 |
+
annotated_image = draw_landmarks_on_image(rgb_frame.numpy_view(), detection_result)
|
66 |
+
|
67 |
+
return annotated_image
|