Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -1,144 +1,102 @@
|
|
1 |
-
#duplicated from https://huggingface.co/spaces/chheplo/DeepSeek-R1-Distill-Llama-8B
|
2 |
-
import gradio as gr
|
3 |
-
import os
|
4 |
import spaces
|
5 |
-
|
6 |
-
|
|
|
|
|
7 |
from threading import Thread
|
8 |
|
9 |
-
|
10 |
-
HF_TOKEN = os.environ.get("HF_TOKEN", None)
|
11 |
-
|
12 |
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
|
19 |
-
|
20 |
-
|
|
|
21 |
|
22 |
-
---
|
23 |
-
"""
|
24 |
|
25 |
-
PLACEHOLDER = """
|
26 |
-
<div style="padding: 30px; text-align: center; display: flex; flex-direction: column; align-items: center;">
|
27 |
-
<h1 style="font-size: 28px; margin-bottom: 2px; opacity: 0.55;">DeepSeek-R1-Distill-Llama-8B</h1>
|
28 |
-
<p style="font-size: 18px; margin-bottom: 2px; opacity: 0.65;">Ask me anything...</p>
|
29 |
-
</div>
|
30 |
-
"""
|
31 |
|
|
|
32 |
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
display: block;
|
37 |
-
}
|
38 |
|
39 |
-
#duplicate-button {
|
40 |
-
margin: auto;
|
41 |
-
color: white;
|
42 |
-
background: #1565c0;
|
43 |
-
border-radius: 100vh;
|
44 |
-
}
|
45 |
-
"""
|
46 |
-
model_id = "AXCXEPT/phi-4-deepseek-R1K-RL-EZO"
|
47 |
-
#model_id = "AXCXEPT/phi-4-open-R1-Distill-EZOv1"
|
48 |
-
model_id = "mradermacher/phi-4-deepseek-R1K-RL-EZO-GGUF"
|
49 |
-
filename = "phi-4-deepseek-R1K-RL-EZO.Q8_0.gguf"
|
50 |
-
# Load the tokenizer and model
|
51 |
-
tokenizer = AutoTokenizer.from_pretrained(model_id,gguf_file=filename)
|
52 |
-
model = AutoModelForCausalLM.from_pretrained(model_id,gguf_file=filename) # to("cuda:0")
|
53 |
-
terminators = [
|
54 |
-
tokenizer.eos_token_id,
|
55 |
-
tokenizer.convert_tokens_to_ids("<|eot_id|>")
|
56 |
-
]
|
57 |
-
|
58 |
-
@spaces.GPU(duration=120)
|
59 |
-
def chat_llama3_8b(message: str,
|
60 |
-
history: list,
|
61 |
-
temperature: float,
|
62 |
-
max_new_tokens: int
|
63 |
-
) -> str:
|
64 |
-
"""
|
65 |
-
Generate a streaming response using the llama3-8b model.
|
66 |
-
Args:
|
67 |
-
message (str): The input message.
|
68 |
-
history (list): The conversation history used by ChatInterface.
|
69 |
-
temperature (float): The temperature for generating the response.
|
70 |
-
max_new_tokens (int): The maximum number of new tokens to generate.
|
71 |
-
Returns:
|
72 |
-
str: The generated response.
|
73 |
-
"""
|
74 |
-
conversation = []
|
75 |
-
for user, assistant in history:
|
76 |
-
conversation.extend([{"role": "user", "content": user}, {"role": "assistant", "content": assistant}])
|
77 |
-
conversation.append({"role": "user", "content": message})
|
78 |
-
|
79 |
-
input_ids = tokenizer.apply_chat_template(conversation, return_tensors="pt").to(model.device)
|
80 |
-
|
81 |
-
streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True)
|
82 |
-
|
83 |
-
generate_kwargs = dict(
|
84 |
-
input_ids= input_ids,
|
85 |
-
streamer=streamer,
|
86 |
-
max_new_tokens=max_new_tokens,
|
87 |
-
do_sample=True,
|
88 |
-
temperature=temperature,
|
89 |
-
eos_token_id=terminators,
|
90 |
-
)
|
91 |
-
# This will enforce greedy generation (do_sample=False) when the temperature is passed 0, avoiding the crash.
|
92 |
-
if temperature == 0:
|
93 |
-
generate_kwargs['do_sample'] = False
|
94 |
-
|
95 |
-
t = Thread(target=model.generate, kwargs=generate_kwargs)
|
96 |
-
t.start()
|
97 |
-
|
98 |
-
outputs = []
|
99 |
-
for text in streamer:
|
100 |
-
outputs.append(text)
|
101 |
-
#print(outputs)
|
102 |
-
yield "".join(outputs)
|
103 |
-
|
104 |
|
105 |
-
# Gradio block
|
106 |
-
chatbot=gr.Chatbot(height=450, placeholder=PLACEHOLDER, label='Gradio ChatInterface')
|
107 |
|
108 |
-
|
|
|
|
|
|
|
|
|
109 |
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
],
|
137 |
-
cache_examples=False,
|
138 |
-
)
|
139 |
|
140 |
-
|
|
|
|
|
|
|
|
|
|
|
141 |
|
142 |
-
|
143 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
144 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import spaces
|
2 |
+
import os
|
3 |
+
import torch
|
4 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
|
5 |
+
from transformers import TextIteratorStreamer
|
6 |
from threading import Thread
|
7 |
|
8 |
+
import gradio as gr
|
|
|
|
|
9 |
|
10 |
+
text_generator = None
|
11 |
+
is_hugging_face = True
|
12 |
+
model_id = "AXCXEPT/phi-4-deepseek-R1K-RL-EZO"
|
13 |
+
model_id = "AXCXEPT/phi-4-open-R1-Distill-EZOv1"
|
14 |
+
|
15 |
+
huggingface_token = os.getenv("HUGGINGFACE_TOKEN")
|
16 |
+
huggingface_token = None
|
17 |
+
device = "auto" # torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
18 |
+
device = "cuda"
|
19 |
+
dtype = torch.bfloat16
|
20 |
+
dtype = torch.float16
|
21 |
+
|
22 |
+
if not huggingface_token:
|
23 |
+
pass
|
24 |
+
print("no HUGGINGFACE_TOKEN if you need set secret ")
|
25 |
+
#raise ValueError("HUGGINGFACE_TOKEN environment variable is not set")
|
26 |
+
|
27 |
|
28 |
+
|
29 |
+
|
30 |
+
|
31 |
|
|
|
|
|
32 |
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
|
34 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id, token=huggingface_token)
|
35 |
|
36 |
+
print(model_id,device,dtype)
|
37 |
+
histories = []
|
38 |
+
#model = None
|
|
|
|
|
39 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
40 |
|
|
|
|
|
41 |
|
42 |
+
if not is_hugging_face:
|
43 |
+
model = AutoModelForCausalLM.from_pretrained(
|
44 |
+
model_id, token=huggingface_token ,torch_dtype=dtype,device_map=device
|
45 |
+
)
|
46 |
+
text_generator = pipeline("text-generation", model=model, tokenizer=tokenizer,torch_dtype=dtype,device_map=device,stream=True ) #pipeline has not to(device)
|
47 |
|
48 |
+
if next(model.parameters()).is_cuda:
|
49 |
+
print("The model is on a GPU")
|
50 |
+
else:
|
51 |
+
print("The model is on a CPU")
|
52 |
+
|
53 |
+
#print(f"text_generator.device='{text_generator.device}")
|
54 |
+
if str(text_generator.device).strip() == 'cuda':
|
55 |
+
print("The pipeline is using a GPU")
|
56 |
+
else:
|
57 |
+
print("The pipeline is using a CPU")
|
58 |
+
|
59 |
+
print("initialized")
|
60 |
+
|
61 |
+
|
62 |
+
def generate_text(messages):
|
63 |
+
if is_hugging_face:#need everytime initialize for ZeroGPU
|
64 |
+
model = AutoModelForCausalLM.from_pretrained(
|
65 |
+
model_id, token=huggingface_token ,torch_dtype=dtype,device_map=device
|
66 |
+
)
|
67 |
+
model.to(device)
|
68 |
+
question = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
69 |
+
question = tokenizer(question, return_tensors="pt").to(device)
|
70 |
+
|
71 |
+
streamer = TextIteratorStreamer(tokenizer, skip_prompt=True)
|
72 |
+
generation_kwargs = dict(question, streamer=streamer, max_new_tokens=200)
|
73 |
+
thread = Thread(target=model.generate, kwargs=generation_kwargs)
|
|
|
|
|
|
|
74 |
|
75 |
+
generated_output = ""
|
76 |
+
thread.start()
|
77 |
+
for new_text in streamer:
|
78 |
+
generated_output += new_text
|
79 |
+
yield generated_output
|
80 |
+
generate_text.zerogpu = True
|
81 |
|
82 |
+
|
83 |
+
|
84 |
+
@spaces.GPU(duration=60)
|
85 |
+
def call_generate_text(message, history):
|
86 |
+
# history.append({"role": "user", "content": message})
|
87 |
+
#print(message)
|
88 |
+
#print(history)
|
89 |
+
|
90 |
+
messages = history+[{"role":"user","content":message}]
|
91 |
+
try:
|
92 |
+
|
93 |
+
for text in generate_text(messages):
|
94 |
+
yield text
|
95 |
+
except RuntimeError as e:
|
96 |
+
print(f"An unexpected error occurred: {e}")
|
97 |
+
yield ""
|
98 |
|
99 |
+
demo = gr.ChatInterface(call_generate_text,type="messages")
|
100 |
+
|
101 |
+
if __name__ == "__main__":
|
102 |
+
demo.launch()
|