Spaces:
Runtime error
Runtime error
import gradio as gr | |
import torch | |
#from torch import autocast // only for GPU | |
from PIL import Image | |
import numpy as np | |
from io import BytesIO | |
import os | |
MY_SECRET_TOKEN=os.environ.get('HF_TOKEN_SD') | |
#from diffusers import StableDiffusionPipeline | |
from diffusers import StableDiffusionImg2ImgPipeline | |
def empty_checker(images, **kwargs): return images, False | |
print("hello") | |
YOUR_TOKEN=MY_SECRET_TOKEN | |
device="cpu" | |
# img2img pipeline | |
img_pipe = StableDiffusionImg2ImgPipeline.from_pretrained("AkiKagura/mkgen-diffusion", duse_auth_token=YOUR_TOKEN) | |
img_pipe.safety_checker = empty_checker | |
img_pipe.to(device) | |
source_img = gr.Image(source="upload", type="filepath", label="init_img") | |
gallery = gr.Gallery(label="Generated images", show_label=False, elem_id="gallery").style(grid=[1], height="auto") | |
def resize(img): | |
#baseheight = value | |
img = Image.open(img) | |
#hpercent = (baseheight/float(img.size[1])) | |
#wsize = int((float(img.size[0])*float(hpercent))) | |
#img = img.resize((wsize,baseheight), Image.Resampling.LANCZOS) | |
hsize = img.size[1] | |
wsize = img.size[0] | |
if 6*wsize <= 5*hsize: | |
wsize = 512 | |
hsize = 768 | |
elif 4*wsize >= 5*hsize: | |
wsize = 768 | |
hsize = 512 | |
else: | |
wsize = 512 | |
hsize = 512 | |
img = img.resize((wsize,hsize), Image.Resampling.LANCZOS) | |
return img, wsize, hsize | |
def infer(source_img, prompt, guide, steps, seed, strength): | |
generator = torch.Generator('cpu').manual_seed(seed) | |
source_image, img_w, img_h = resize(source_img) | |
source_image.save('source.png') | |
images_list = img_pipe([prompt] * 1, init_image=source_image, strength=strength, guidance_scale=guide, num_inference_steps=steps, width=img_w, height=img_h) | |
images = [] | |
for i, image in enumerate(images_list["images"]): | |
images.append(image) | |
return images | |
print("done") | |
title="Marco Generation Img2img" | |
description="<p style='text-align: center;'>Upload your image and input 'mkmk woman' to get Marco image. <br />Warning: Slow process... about 10 min inference time.</p>" | |
gr.Interface(fn=infer, inputs=[source_img, | |
"text", | |
gr.Slider(2, 15, value = 7, label = 'Guidence Scale'), | |
gr.Slider(10, 50, value = 25, step = 1, label = 'Number of Iterations'), | |
gr.Slider(label = "Seed", minimum = 0, maximum = 2147483647, step = 1, randomize = True), | |
gr.Slider(label='Strength', minimum = 0, maximum = 1, step = .05, value = .75)], | |
outputs=gallery,title=title,description=description, allow_flagging="manual", flagging_dir="flagged").queue(max_size=100).launch(enable_queue=True) |