Spaces:
Sleeping
Sleeping
import streamlit as st | |
from langchain.chains import LLMChain | |
from langchain_core.prompts import PromptTemplate | |
from langchain_community.llms.huggingface_pipeline import HuggingFacePipeline | |
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline,BitsAndBytesConfig | |
import os | |
from langchain_community.llms import HuggingFaceEndpoint | |
aa='' | |
HF_TOKEN = os.environ["HF_TOKEN"] | |
# quants = BitsAndBytesConfig(load_in_4bit=True) | |
template = ''' You are an expert Blog generator , Given the Topic , the intended audience and the maximum number of words , | |
Write a blog on the given topic | |
Topic : {topic} | |
Intended Audince : {role} | |
Number of Words : {words} | |
Strictly return the output in a markdown format. | |
Return only the blog and do not provide any other information.''' | |
prompt = PromptTemplate(template = template,input_variables = ['topic','role','words']) | |
def main(): | |
st.title(" :fire: Professional Blog Generator :fire:") | |
st.markdown( | |
""" | |
<style> | |
body { | |
background-color: #000000;; | |
color: white; | |
} | |
</style> | |
""", | |
unsafe_allow_html=True | |
) | |
st.sidebar.header("Input Parameters") | |
role = st.sidebar.text_input("Who is this intednded for ?", "Data Scientist") | |
topic = st.sidebar.text_input("On what Topic should the blog be on ?", "Machine Learning") | |
word_count = st.sidebar.slider("Number of Words", min_value=50, max_value=1000, value=200, step=50) | |
if st.sidebar.button("Generate Blog"): | |
repo_id = "google/gemma-1.1-7b-it" | |
llm = HuggingFaceEndpoint( | |
repo_id=repo_id, max_length=128, temperature=0.5, huggingfacehub_api_token=HF_TOKEN | |
) | |
llm_chain = LLMChain(prompt=prompt, llm=llm) | |
# print(llm_chain.run(question)) | |
aa = llm_chain.run({"topic": topic,"words":word_count,"role":role}) | |
st.write(aa) | |
# st.write(aa) | |
# st.write("Will Come here") | |
if __name__ == "__main__": | |
main() |