Spaces:
Sleeping
Sleeping
Ajay12345678980
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -7,18 +7,16 @@ from transformers import GPT2LMHeadModel, GPT2Tokenizer
|
|
7 |
model_repo_id = "Ajay12345678980/QA_bot" # Replace with your model repository ID
|
8 |
|
9 |
# Initialize the model and tokenizer
|
10 |
-
|
|
|
11 |
tokenizer = GPT2Tokenizer.from_pretrained(model_repo_id)
|
12 |
|
13 |
# Define the prediction function
|
14 |
def generate_answer(question):
|
15 |
-
input_ids = tokenizer.encode(question, return_tensors="pt").to(
|
16 |
-
|
17 |
-
# Create the attention mask and pad token id
|
18 |
-
attention_mask = torch.ones_like(input_ids).to("cuda")
|
19 |
pad_token_id = tokenizer.eos_token_id
|
20 |
|
21 |
-
#output = model[0].generate(
|
22 |
output = model.generate(
|
23 |
input_ids,
|
24 |
max_new_tokens=100,
|
@@ -30,17 +28,14 @@ def generate_answer(question):
|
|
30 |
start_index = decoded_output.find("Answer")
|
31 |
end_index = decoded_output.find("<ANSWER_ENDED>")
|
32 |
|
33 |
-
if
|
34 |
-
|
35 |
-
|
|
|
|
|
36 |
return answer_text
|
37 |
else:
|
38 |
-
|
39 |
-
answer_text = decoded_output[start_index + len("Answer"):].strip()
|
40 |
-
return answer_text
|
41 |
-
|
42 |
-
#return tokenizer.decode(output[0], skip_special_tokens=True)
|
43 |
-
#return tokenizer.decode(output, skip_special_tokens=True)
|
44 |
|
45 |
# Gradio interface setup
|
46 |
interface = gr.Interface(
|
@@ -48,7 +43,7 @@ interface = gr.Interface(
|
|
48 |
inputs="text",
|
49 |
outputs="text",
|
50 |
title="GPT-2 Text Generation",
|
51 |
-
description="Enter
|
52 |
)
|
53 |
|
54 |
# Launch the Gradio app
|
|
|
7 |
model_repo_id = "Ajay12345678980/QA_bot" # Replace with your model repository ID
|
8 |
|
9 |
# Initialize the model and tokenizer
|
10 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
11 |
+
model = GPT2LMHeadModel.from_pretrained(model_repo_id).to(device)
|
12 |
tokenizer = GPT2Tokenizer.from_pretrained(model_repo_id)
|
13 |
|
14 |
# Define the prediction function
|
15 |
def generate_answer(question):
|
16 |
+
input_ids = tokenizer.encode(question, return_tensors="pt").to(device)
|
17 |
+
attention_mask = torch.ones_like(input_ids).to(device)
|
|
|
|
|
18 |
pad_token_id = tokenizer.eos_token_id
|
19 |
|
|
|
20 |
output = model.generate(
|
21 |
input_ids,
|
22 |
max_new_tokens=100,
|
|
|
28 |
start_index = decoded_output.find("Answer")
|
29 |
end_index = decoded_output.find("<ANSWER_ENDED>")
|
30 |
|
31 |
+
if start_index != -1:
|
32 |
+
if end_index != -1:
|
33 |
+
answer_text = decoded_output[start_index + len("Answer"):end_index].strip()
|
34 |
+
else:
|
35 |
+
answer_text = decoded_output[start_index + len("Answer"):].strip()
|
36 |
return answer_text
|
37 |
else:
|
38 |
+
return "Sorry, I couldn't generate an answer."
|
|
|
|
|
|
|
|
|
|
|
39 |
|
40 |
# Gradio interface setup
|
41 |
interface = gr.Interface(
|
|
|
43 |
inputs="text",
|
44 |
outputs="text",
|
45 |
title="GPT-2 Text Generation",
|
46 |
+
description="Enter a question and see what the model generates!"
|
47 |
)
|
48 |
|
49 |
# Launch the Gradio app
|