Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -7,18 +7,16 @@ from transformers import GPT2LMHeadModel, GPT2Tokenizer
|
|
| 7 |
model_repo_id = "Ajay12345678980/QA_bot" # Replace with your model repository ID
|
| 8 |
|
| 9 |
# Initialize the model and tokenizer
|
| 10 |
-
|
|
|
|
| 11 |
tokenizer = GPT2Tokenizer.from_pretrained(model_repo_id)
|
| 12 |
|
| 13 |
# Define the prediction function
|
| 14 |
def generate_answer(question):
|
| 15 |
-
input_ids = tokenizer.encode(question, return_tensors="pt").to(
|
| 16 |
-
|
| 17 |
-
# Create the attention mask and pad token id
|
| 18 |
-
attention_mask = torch.ones_like(input_ids).to("cuda")
|
| 19 |
pad_token_id = tokenizer.eos_token_id
|
| 20 |
|
| 21 |
-
#output = model[0].generate(
|
| 22 |
output = model.generate(
|
| 23 |
input_ids,
|
| 24 |
max_new_tokens=100,
|
|
@@ -30,17 +28,14 @@ def generate_answer(question):
|
|
| 30 |
start_index = decoded_output.find("Answer")
|
| 31 |
end_index = decoded_output.find("<ANSWER_ENDED>")
|
| 32 |
|
| 33 |
-
if
|
| 34 |
-
|
| 35 |
-
|
|
|
|
|
|
|
| 36 |
return answer_text
|
| 37 |
else:
|
| 38 |
-
|
| 39 |
-
answer_text = decoded_output[start_index + len("Answer"):].strip()
|
| 40 |
-
return answer_text
|
| 41 |
-
|
| 42 |
-
#return tokenizer.decode(output[0], skip_special_tokens=True)
|
| 43 |
-
#return tokenizer.decode(output, skip_special_tokens=True)
|
| 44 |
|
| 45 |
# Gradio interface setup
|
| 46 |
interface = gr.Interface(
|
|
@@ -48,7 +43,7 @@ interface = gr.Interface(
|
|
| 48 |
inputs="text",
|
| 49 |
outputs="text",
|
| 50 |
title="GPT-2 Text Generation",
|
| 51 |
-
description="Enter
|
| 52 |
)
|
| 53 |
|
| 54 |
# Launch the Gradio app
|
|
|
|
| 7 |
model_repo_id = "Ajay12345678980/QA_bot" # Replace with your model repository ID
|
| 8 |
|
| 9 |
# Initialize the model and tokenizer
|
| 10 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 11 |
+
model = GPT2LMHeadModel.from_pretrained(model_repo_id).to(device)
|
| 12 |
tokenizer = GPT2Tokenizer.from_pretrained(model_repo_id)
|
| 13 |
|
| 14 |
# Define the prediction function
|
| 15 |
def generate_answer(question):
|
| 16 |
+
input_ids = tokenizer.encode(question, return_tensors="pt").to(device)
|
| 17 |
+
attention_mask = torch.ones_like(input_ids).to(device)
|
|
|
|
|
|
|
| 18 |
pad_token_id = tokenizer.eos_token_id
|
| 19 |
|
|
|
|
| 20 |
output = model.generate(
|
| 21 |
input_ids,
|
| 22 |
max_new_tokens=100,
|
|
|
|
| 28 |
start_index = decoded_output.find("Answer")
|
| 29 |
end_index = decoded_output.find("<ANSWER_ENDED>")
|
| 30 |
|
| 31 |
+
if start_index != -1:
|
| 32 |
+
if end_index != -1:
|
| 33 |
+
answer_text = decoded_output[start_index + len("Answer"):end_index].strip()
|
| 34 |
+
else:
|
| 35 |
+
answer_text = decoded_output[start_index + len("Answer"):].strip()
|
| 36 |
return answer_text
|
| 37 |
else:
|
| 38 |
+
return "Sorry, I couldn't generate an answer."
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 39 |
|
| 40 |
# Gradio interface setup
|
| 41 |
interface = gr.Interface(
|
|
|
|
| 43 |
inputs="text",
|
| 44 |
outputs="text",
|
| 45 |
title="GPT-2 Text Generation",
|
| 46 |
+
description="Enter a question and see what the model generates!"
|
| 47 |
)
|
| 48 |
|
| 49 |
# Launch the Gradio app
|