AisingioroHao0 commited on
Commit
4de728a
·
1 Parent(s): 1522391
README.assets/3x9_blueprint.png ADDED
README.assets/3x9_prompt.png ADDED
README.assets/3x9_result.png ADDED
README.md CHANGED
@@ -1,12 +1,49 @@
1
- ---
2
- title: StableDiffusionReferenceOnly
3
- emoji: 🐨
4
- colorFrom: red
5
- colorTo: red
6
- sdk: gradio
7
- sdk_version: 3.50.0
8
- app_file: app.py
9
- pinned: false
10
- ---
11
-
12
- Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # StableDiffusionReferenceOnly
2
+
3
+ A general model for secondary creation.
4
+
5
+ No training is needed to achieve style transfer of any anime character and line drawing coloring.
6
+
7
+ Code: https://github.com/aihao2000/StableDiffusionReferenceOnly
8
+
9
+
10
+
11
+ Model: https://huggingface.co/AisingioroHao0/stable-diffusion-reference-only-automatic-coloring-0.1.2
12
+
13
+
14
+
15
+ | prompt | blueprint | result |
16
+ | :---------------------------------: | :------------------------------------: | :---------------------------------: |
17
+ | ![](./README.assets/3x9_prompt.png) | ![](./README.assets/3x9_blueprint.png) | ![](./README.assets/3x9_result.png) |
18
+
19
+
20
+
21
+ ### Instructions
22
+
23
+ Secondary creation requires two images.
24
+
25
+ One is prompt image. It is a reference image that you wish to migrate to the new image. We provide the ```character segment``` function to clear the background, which often brings better results.
26
+
27
+ The other is blueprint image. It will control the picture structure of the new picture. It is also recommended to use ```character segment``` to enhance the effect. And there are two other buttons. If the blueprint you input is manual line drawing, you only need to click the ```color inversion``` button to ensure a black background and white lines. If you are entering a color image of another character, you need to click the ```get line art``` button and then click the ```color inversion``` button. Then click the inference button to get the results.
28
+
29
+
30
+
31
+ You can also directly upload reference images and line art image and click ```automatic coloring``` to get the results without the above operations.
32
+
33
+ You can also directly upload two color character pictures to try ```style transfer```
34
+
35
+ ## 介绍
36
+
37
+ 二次创作需要两张图片。
38
+
39
+ 一是提示图像。 它是您希望迁移到新图像的参考图像。 我们提供了角色分割```character segment```功能来清除背景,这往往会带来更好的效果。
40
+
41
+ 另一种是蓝图图像。 它将控制新图片的图片结构。还建议使用```character segment```来增强效果。 还有另外两个按钮。 如果您输入的图纸是手动画线,则只需点击```color inversion```按钮即可保证黑底白线。 如果您要输入另一个角色的彩色图像,则需要单击“获取线条艺术”按钮,然后单击```color inversion```按钮。 然后点击```inference```按钮即可得到结果。
42
+
43
+
44
+
45
+ 您也可以直接上传参考图和线稿图,点击```automatic coloring```即可得到结果,无需进行上述操作。
46
+
47
+ 也可以直接上传两张彩色人物图片来试试风格迁移```style transfer```。
48
+
49
+ ##
app.py ADDED
@@ -0,0 +1,182 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import huggingface_hub
2
+ import gradio as gr
3
+ from stable_diffusion_reference_only.pipelines.stable_diffusion_reference_only_pipeline import (
4
+ StableDiffusionReferenceOnlyPipeline,
5
+ )
6
+ import anime_segmentation
7
+ from diffusers.schedulers import UniPCMultistepScheduler
8
+ from PIL import Image
9
+ import cv2
10
+ import numpy as np
11
+ import os
12
+
13
+ automatic_coloring_pipeline = StableDiffusionReferenceOnlyPipeline.from_pretrained(
14
+ "AisingioroHao0/stable-diffusion-reference-only-automatic-coloring-0.1.2"
15
+ )
16
+ automatic_coloring_pipeline.scheduler = UniPCMultistepScheduler.from_config(
17
+ automatic_coloring_pipeline.scheduler.config
18
+ )
19
+
20
+ segment_model = anime_segmentation.get_model(
21
+ model_path=huggingface_hub.hf_hub_download("skytnt/anime-seg", "isnetis.ckpt")
22
+ )
23
+
24
+
25
+ def character_segment(img):
26
+ if img is None:
27
+ return None
28
+ img = anime_segmentation.character_segment(segment_model, img)
29
+ img = cv2.cvtColor(img, cv2.COLOR_RGBA2RGB)
30
+ return img
31
+
32
+
33
+ def color_inversion(img):
34
+ if img is None:
35
+ return None
36
+ return 255 - img
37
+
38
+
39
+ def get_line_art(img):
40
+ if img is None:
41
+ return None
42
+ img = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY)
43
+ img = cv2.adaptiveThreshold(
44
+ img,
45
+ 255,
46
+ cv2.ADAPTIVE_THRESH_MEAN_C,
47
+ cv2.THRESH_BINARY,
48
+ blockSize=5,
49
+ C=7,
50
+ )
51
+ img = cv2.cvtColor(img, cv2.COLOR_GRAY2RGB)
52
+ return img
53
+
54
+
55
+ def inference(prompt, blueprint, num_inference_steps):
56
+ if prompt is None or blueprint is None:
57
+ return None
58
+ return np.array(
59
+ automatic_coloring_pipeline(
60
+ prompt=Image.fromarray(prompt),
61
+ blueprint=Image.fromarray(blueprint),
62
+ num_inference_steps=num_inference_steps,
63
+ ).images[0]
64
+ )
65
+
66
+
67
+ def automatic_coloring(prompt, blueprint, num_inference_steps):
68
+ if prompt is None or blueprint is None:
69
+ return None
70
+ blueprint = color_inversion(blueprint)
71
+ return inference(prompt, blueprint, num_inference_steps)
72
+
73
+
74
+ def style_transfer(prompt, blueprint, num_inference_steps):
75
+ if prompt is None or blueprint is None:
76
+ return None
77
+ prompt = character_segment(prompt)
78
+ blueprint = character_segment(blueprint)
79
+ blueprint = get_line_art(blueprint)
80
+ blueprint = color_inversion(blueprint)
81
+ return inference(prompt, blueprint, num_inference_steps)
82
+
83
+
84
+ with gr.Blocks() as demo:
85
+ gr.Markdown(
86
+ """
87
+ # Stable Diffusion Reference Only Automatic Coloring 0.1.2\n\n
88
+ demo for [<svg height="32" aria-hidden="true" viewBox="0 0 16 16" version="1.1" width="32" data-view-component="true" class="octicon octicon-mark-github v-align-middle color-fg-default">
89
+ <path d="M8 0c4.42 0 8 3.58 8 8a8.013 8.013 0 0 1-5.45 7.59c-.4.08-.55-.17-.55-.38 0-.27.01-1.13.01-2.2 0-.75-.25-1.23-.54-1.48 1.78-.2 3.65-.88 3.65-3.95 0-.88-.31-1.59-.82-2.15.08-.2.36-1.02-.08-2.12 0 0-.67-.22-2.2.82-.64-.18-1.32-.27-2-.27-.68 0-1.36.09-2 .27-1.53-1.03-2.2-.82-2.2-.82-.44 1.1-.16 1.92-.08 2.12-.51.56-.82 1.28-.82 2.15 0 3.06 1.86 3.75 3.64 3.95-.23.2-.44.55-.51 1.07-.46.21-1.61.55-2.33-.66-.15-.24-.6-.83-1.23-.82-.67.01-.27.38.01.53.34.19.73.9.82 1.13.16.45.68 1.31 2.69.94 0 .67.01 1.3.01 1.49 0 .21-.15.45-.55.38A7.995 7.995 0 0 1 0 8c0-4.42 3.58-8 8-8Z"></path>
90
+ </svg>](https://github.com/aihao2000/StableDiffusionReferenceOnly)
91
+ """
92
+ )
93
+ with gr.Row():
94
+ with gr.Column():
95
+ prompt_input_compoent = gr.Image(shape=(512, 512), label="prompt")
96
+ prompt_character_segment_button = gr.Button(
97
+ "character segment",
98
+ )
99
+ prompt_character_segment_button.click(
100
+ character_segment,
101
+ inputs=prompt_input_compoent,
102
+ outputs=prompt_input_compoent,
103
+ )
104
+ with gr.Column():
105
+ blueprint_input_compoent = gr.Image(shape=(512, 512), label="blueprint")
106
+ blueprint_character_segment_button = gr.Button("character segment")
107
+ blueprint_character_segment_button.click(
108
+ character_segment,
109
+ inputs=blueprint_input_compoent,
110
+ outputs=blueprint_input_compoent,
111
+ )
112
+ get_line_art_button = gr.Button(
113
+ "get line art",
114
+ )
115
+ get_line_art_button.click(
116
+ get_line_art,
117
+ inputs=blueprint_input_compoent,
118
+ outputs=blueprint_input_compoent,
119
+ )
120
+ color_inversion_button = gr.Button(
121
+ "color inversion",
122
+ )
123
+ color_inversion_button.click(
124
+ color_inversion,
125
+ inputs=blueprint_input_compoent,
126
+ outputs=blueprint_input_compoent,
127
+ )
128
+ with gr.Column():
129
+ result_output_component = gr.Image(shape=(512, 512), label="result")
130
+ num_inference_steps_input_component = gr.Number(
131
+ 20, label="num inference steps", minimum=1, maximum=1000, step=1
132
+ )
133
+ inference_button = gr.Button("inference")
134
+ inference_button.click(
135
+ inference,
136
+ inputs=[
137
+ prompt_input_compoent,
138
+ blueprint_input_compoent,
139
+ num_inference_steps_input_component,
140
+ ],
141
+ outputs=result_output_component,
142
+ )
143
+ automatic_coloring_button = gr.Button("automatic coloring")
144
+ automatic_coloring_button.click(
145
+ automatic_coloring,
146
+ inputs=[
147
+ prompt_input_compoent,
148
+ blueprint_input_compoent,
149
+ num_inference_steps_input_component,
150
+ ],
151
+ outputs=result_output_component,
152
+ )
153
+ style_transfer_button = gr.Button("style transfer")
154
+ style_transfer_button.click(
155
+ style_transfer,
156
+ inputs=[
157
+ prompt_input_compoent,
158
+ blueprint_input_compoent,
159
+ num_inference_steps_input_component,
160
+ ],
161
+ outputs=result_output_component,
162
+ )
163
+ with gr.Row():
164
+ gr.Examples(
165
+ examples=[
166
+ [
167
+ os.path.join(
168
+ os.path.dirname(__file__), "README.assets", "3x9_prompt.png"
169
+ ),
170
+ os.path.join(
171
+ os.path.dirname(__file__), "README.assets", "3x9_blueprint.png"
172
+ ),
173
+ ],
174
+ ],
175
+ inputs=[prompt_input_compoent, blueprint_input_compoent],
176
+ outputs=result_output_component,
177
+ fn=lambda x, y: None,
178
+ cache_examples=True,
179
+ )
180
+
181
+
182
+ demo.launch()
requirements.txt ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ git+https://github.com/aihao2000/StableDiffusionReferenceOnly.git
2
+ git+https://github.com/aihao2000/anime_segmentation.git