File size: 7,931 Bytes
6613fa7 865f1d8 6613fa7 865f1d8 6613fa7 ac974e2 6613fa7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 |
import streamlit as st
import google.generativeai as genai
from PIL import Image
import io
import base64
import pandas as pd
import zipfile
import PyPDF2
# Konfiguration der Seite
st.set_page_config(page_title="Gemini AI Chat", layout="wide")
st.title("🤖 Gemini AI Chat Interface")
st.markdown("""
**Welcome to the Gemini AI Chat Interface!**
Chat seamlessly with Google's advanced Gemini AI models, supporting multiple input types.
🔗 [GitHub Profile](https://github.com/volkansah) |
📂 [Project Repository](https://github.com/volkansah/gemini-ai-chat) |
💬 [Soon](https://aicodecraft.io)
""")
# Session State Management
if "messages" not in st.session_state:
st.session_state.messages = []
if "uploaded_content" not in st.session_state:
st.session_state.uploaded_content = None
# Funktionen zur Dateiverarbeitung
def encode_image(image):
buffered = io.BytesIO()
image.save(buffered, format="JPEG")
return base64.b64encode(buffered.getvalue()).decode('utf-8')
def process_file(uploaded_file):
file_type = uploaded_file.name.split('.')[-1].lower()
if file_type in ["jpg", "jpeg", "png"]:
return {"type": "image", "content": Image.open(uploaded_file).convert('RGB')}
code_extensions = ["html", "css", "php", "js", "py", "java", "c", "cpp"]
if file_type in ["txt"] + code_extensions:
return {"type": "text", "content": uploaded_file.read().decode("utf-8")}
if file_type in ["csv", "xlsx"]:
df = pd.read_csv(uploaded_file) if file_type == "csv" else pd.read_excel(uploaded_file)
return {"type": "text", "content": df.to_string()}
if file_type == "pdf":
reader = PyPDF2.PdfReader(uploaded_file)
return {"type": "text", "content": "".join(page.extract_text() for page in reader.pages if page.extract_text())}
if file_type == "zip":
with zipfile.ZipFile(uploaded_file) as z: # <- Hier beginnt der Block
newline = "\n"
content = f"ZIP Contents:{newline}"
text_extensions = ('.txt', '.csv', '.py', '.html', '.js', '.css',
'.php', '.json', '.xml', '.c', '.cpp', '.java',
'.cs', '.rb', '.go', '.ts', '.swift', '.kt', '.rs', '.sh', '.sql')
for file_info in z.infolist():
if not file_info.is_dir():
try:
with z.open(file_info.filename) as file:
if file_info.filename.lower().endswith(text_extensions):
file_content = file.read().decode('utf-8')
content += f"{newline}📄 {file_info.filename}:{newline}{file_content}{newline}"
else:
raw_content = file.read()
try:
decoded_content = raw_content.decode('utf-8')
content += f"{newline}📄 {file_info.filename} (unbekannte Erweiterung):{newline}{decoded_content}{newline}"
except UnicodeDecodeError:
content += f"{newline}⚠️ Binärdatei ignoriert: {file_info.filename}{newline}"
except Exception as e:
content += f"{newline}❌ Fehler bei {file_info.filename}: {str(e)}{newline}"
return {"type": "text", "content": content} # Korrekt eingerückt
return {"type": "error", "content": "Unsupported file format"}
# Sidebar für Einstellungen
with st.sidebar:
api_key = st.text_input("Google AI API Key", type="password")
model = st.selectbox("Model", [
"gemini-1.5-flash",
"gemini-1.5-pro",
"gemini-1.5-pro-vision-latest", # Vision-Modell für Bilder
"gemini-1.0-pro",
"gemini-1.0-pro-vision-latest", # Vision-Modell für Bilder
"gemini-2.0-pro-exp-02-05",
"gemini-2.0-flash-lite",
"gemini-2.0-flash-exp-image-generation", # Vision-Modell für Bilder
"gemini-2.0-flash",
"gemini-2.0-flash-thinking-exp-01-21"
])
temperature = st.slider("Temperature", 0.0, 1.0, 0.7)
max_tokens = st.slider("Max Tokens", 1, 100000, 1000)
# Datei-Upload
uploaded_file = st.file_uploader("Upload File (Image/Text/PDF/ZIP)",
type=["jpg", "jpeg", "png", "txt", "pdf", "zip",
"csv", "xlsx", "html", "css", "php", "js", "py"])
if uploaded_file:
processed = process_file(uploaded_file)
st.session_state.uploaded_content = processed
if processed["type"] == "image":
st.image(processed["content"], caption="Uploaded Image", use_container_width=True)
elif processed["type"] == "text":
st.text_area("File Preview", processed["content"], height=200)
# Chat-Historie anzeigen
for message in st.session_state.messages:
with st.chat_message(message["role"]):
st.markdown(message["content"])
# Chat-Eingabe verarbeiten
if prompt := st.chat_input("Your message..."):
if not api_key:
st.warning("API Key benötigt!")
st.stop()
try:
# API konfigurieren
genai.configure(api_key=api_key)
# Modell auswählen
model_instance = genai.GenerativeModel(model)
# Inhalt vorbereiten
content = [{"text": prompt}]
# Dateiinhalt hinzufügen
if st.session_state.uploaded_content:
if st.session_state.uploaded_content["type"] == "image":
if "vision" not in model.lower():
st.error("Bitte ein Vision-Modell für Bilder auswählen!")
st.stop()
content.append({
"inline_data": {
"mime_type": "image/jpeg",
"data": encode_image(st.session_state.uploaded_content["content"])
}
})
elif st.session_state.uploaded_content["type"] == "text":
content[0]["text"] += f"\n\n[File Content]\n{st.session_state.uploaded_content['content']}"
# Nachricht zur Historie hinzufügen
st.session_state.messages.append({"role": "user", "content": prompt})
with st.chat_message("user"):
st.markdown(prompt)
# Antwort generieren
response = model_instance.generate_content(
content,
generation_config=genai.types.GenerationConfig(
temperature=temperature,
max_output_tokens=max_tokens
)
)
# Überprüfen, ob die Antwort gültig ist
if not response.candidates:
st.error("API Error: Keine gültige Antwort erhalten. Überprüfe die Eingabe oder das Modell.")
else:
# Antwort anzeigen
with st.chat_message("assistant"):
st.markdown(response.text)
st.session_state.messages.append({"role": "assistant", "content": response.text})
except Exception as e:
st.error(f"API Error: {str(e)}")
if "vision" not in model and st.session_state.uploaded_content["type"] == "image":
st.error("Für Bilder einen Vision-fähigen Modell auswählen!")
# Instructions in the sidebar
with st.sidebar:
st.markdown("""
## 📝 Instructions:
1. Enter your Google AI API key
2. Select a model (use vision models for image analysis)
3. Adjust temperature and max tokens if needed
4. Optional: Set a system prompt
5. Upload an image (optional)
6. Type your message and press Enter
### About
🔗 [GitHub Profile](https://github.com/volkansah) |
📂 [Project Repository](https://github.com/volkansah/gemini-ai-chat) |
💬 [Soon](https://aicodecraft.io)
""") |