Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
# Assuming 'model_path' is the path to your saved model
|
3 |
+
model_path = '/content/drive/My Drive/T5_samsum'
|
4 |
+
|
5 |
+
# Load the fine-tuned model and tokenizer
|
6 |
+
model = AutoModelForSeq2SeqLM.from_pretrained(model_path)
|
7 |
+
tokenizer = AutoTokenizer.from_pretrained(model_path)
|
8 |
+
|
9 |
+
summarizer = pipeline("summarization", model=model, tokenizer=tokenizer)
|
10 |
+
|
11 |
+
# Input text for summarization
|
12 |
+
input_text = """
|
13 |
+
Your long text that you want to summarize goes here.
|
14 |
+
It can be a document or any lengthy content you need to condense.
|
15 |
+
"""
|
16 |
+
|
17 |
+
# Perform summarization
|
18 |
+
summary = summarizer(input_text, max_length=150, min_length=50, length_penalty=2.0)
|
19 |
+
|
20 |
+
# Print the generated summary
|
21 |
+
print("Summary:", summary[0]['summary_text'])
|