Fact_Checker1 / app.py
AhmadXGaballah's picture
Update app.py
cd17c13 verified
# app.py — resilient ASR/OCR with Diagnostics (no NLTK)
from __future__ import annotations
import os, re, json, time, glob, uuid, shutil, subprocess, urllib.parse, io
from typing import List, Dict, Optional
from datetime import datetime, timezone
import numpy as np
import pandas as pd
import requests
import gradio as gr
# ---------- small helpers ----------
def now_iso(): return datetime.now(timezone.utc).isoformat()
def normalize_ws(s: str) -> str: return re.sub(r"\s+", " ", s or "").strip()
def sent_tokenize(txt: str) -> List[str]:
return [s.strip() for s in re.split(r'(?<=[.!?])\s+|\n+', txt or '') if s.strip()]
def domain_from_url(url: str) -> str:
try: return urllib.parse.urlparse(url).netloc.lower()
except Exception: return ""
USER_AGENT = "DisinfoFactcheck/1.0 (contact: [email protected])"
HEADERS = {"User-Agent": USER_AGENT}
DEFAULT_ALLOWLIST = [
"who.int","cdc.gov","nih.gov","ema.europa.eu","ecdc.europa.eu",
"reuters.com","apnews.com","associatedpress.com","bbc.com","bbc.co.uk",
"nytimes.com","washingtonpost.com","theguardian.com",
"factcheck.org","snopes.com","fullfact.org","politifact.com",
"un.org","unesco.org","oecd.org","worldbank.org","imf.org",
"nature.com","sciencemag.org","thelancet.com","nejm.org",
"britannica.com","nationalgeographic.com","history.com","worldhistory.org",
"smithsonianmag.com","metmuseum.org","egypt.travel"
]
# ---------- guarded imports ----------
def _try(name):
try: return __import__(name)
except Exception: return None
duckduckgo_search = _try("duckduckgo_search")
trafilatura = _try("trafilatura")
rank_bm25 = _try("rank_bm25")
sentence_transformers = _try("sentence_transformers")
transformers = _try("transformers")
# ASR backends
try:
from faster_whisper import WhisperModel as FWWhisperModel
except Exception:
FWWhisperModel = None
try:
import whisper as OpenAIWhisper
except Exception:
OpenAIWhisper = None
# OCR backends
try:
import easyocr as _easyocr
except Exception:
_easyocr = None
try:
import pytesseract as _pyt
except Exception:
_pyt = None
try:
import cv2
except Exception:
cv2 = None
# ---------- env probes ----------
def ffmpeg_available() -> bool:
return bool(shutil.which("ffmpeg"))
def gpu_available() -> bool:
return bool(shutil.which("nvidia-smi"))
def asr_backends():
b = []
if FWWhisperModel: b.append("faster-whisper")
if OpenAIWhisper: b.append("openai-whisper")
return b
def ocr_backends():
b = []
if _easyocr and cv2: b.append("easyocr")
if _pyt and shutil.which("tesseract"): b.append("tesseract")
return b
# ---------- text chunking ----------
def split_into_chunks(text: str, max_chars: int = 700) -> List[str]:
sents = [normalize_ws(s) for s in sent_tokenize(text or "")]
chunks, cur = [], ""
for s in sents:
if len(cur) + 1 + len(s) > max_chars and cur:
chunks.append(cur.strip()); cur = s
else:
cur = (cur + " " + s).strip()
if cur: chunks.append(cur.strip())
return [c for c in chunks if len(c) > 40]
# ---------- Wikipedia ----------
WIKI_API = "https://en.wikipedia.org/w/api.php"
def wiki_search(query: str, n: int = 6) -> List[Dict]:
r = requests.get(WIKI_API, params={"action":"query","list":"search","srsearch":query,"srlimit":n,"format":"json"},
headers=HEADERS, timeout=20)
r.raise_for_status()
return r.json().get("query",{}).get("search",[])
def wiki_page_content(pageid: int) -> Dict:
r = requests.get(WIKI_API, params={"action":"query","prop":"extracts|info|revisions","pageids":pageid,"inprop":"url",
"rvprop":"timestamp","explaintext":1,"format":"json"},
headers=HEADERS, timeout=20)
r.raise_for_status()
page = next(iter(r.json().get("query",{}).get("pages",{}).values()))
return {"pageid": page.get("pageid"), "title": page.get("title"), "url": page.get("fullurl"),
"last_modified": (page.get("revisions") or [{}])[0].get("timestamp"), "text": page.get("extract") or ""}
REPORTING_PREFIXES = re.compile(r'^(from a video:|another line says:|it also claims:|the video says:|the speaker claims:|someone said:)', re.I)
STOP = {"the","a","an","from","it","also","claims","claim","says","said","line","video","across","cities","that","this","these","those","is","are","was","were","has","have","had","will","can","does","did"}
def sanitize_claim_for_search(s: str) -> str:
s = REPORTING_PREFIXES.sub('', (s or "").strip()).strip('"\'' )
s = re.sub(r"[^A-Za-z0-9\s-]", " ", s)
return re.sub(r"\s+", " ", s).strip()
def keywords_only(s: str, limit: int = 10) -> str:
toks = [w for w in s.lower().split() if w not in STOP]
return " ".join(toks[:limit]) or s
def heuristic_rewrites(s: str) -> List[str]:
rewrites = [s, s + " misinformation"]
rewrites.append(re.sub(r"5g[^\w]+.*covid[- ]?19", "5G COVID-19 conspiracy", s, flags=re.I))
rewrites.append(re.sub(r"owns?\s+the\s+world\s+health\s+organization", "Bill Gates WHO relationship", s, flags=re.I))
rewrites.append(re.sub(r"nasa[^\w]+.*darkness", "NASA hoax darkness", s, flags=re.I))
return list(dict.fromkeys([sanitize_claim_for_search(x) for x in rewrites]))
def build_wiki_corpus(claim: str, max_pages: int = 6, chunk_chars: int = 600) -> List[Dict]:
s1 = sanitize_claim_for_search(claim)
variants = [claim, s1, keywords_only(s1, 10)] + heuristic_rewrites(s1)
seen, corpus = set(), []
for q in variants:
qn = q.strip()
if not qn or qn.lower() in seen: continue
seen.add(qn.lower())
for res in wiki_search(qn, n=max_pages):
pg = wiki_page_content(res["pageid"])
if not pg["text"]: continue
for j, ch in enumerate(split_into_chunks(pg["text"], max_chars=chunk_chars)):
corpus.append({"id": f"wiki-{pg['pageid']}-{j}", "source":"wikipedia", "pageid": pg["pageid"],
"title": pg["title"], "url": pg["url"], "published": pg["last_modified"] or now_iso(),
"text": ch})
if len(corpus) >= max_pages * 2: break
return list({d["id"]: d for d in corpus}.values())
# ---------- Web retrieval ----------
def ddg_search(query: str, max_results: int = 10, allowlist: Optional[List[str]] = None) -> List[Dict]:
if duckduckgo_search is None: return []
DDGS = duckduckgo_search.DDGS
allowlist = allowlist or DEFAULT_ALLOWLIST
out = []
with DDGS() as ddgs:
for r in ddgs.text(query, region="wt-wt", safesearch="moderate", timelimit=None, max_results=max_results):
url = r.get("href") or r.get("url") or ""
if url and any(domain_from_url(url).endswith(dom) for dom in allowlist):
out.append({"title": r.get("title",""), "url": url, "snippet": r.get("body","")})
return out
def fetch_clean_text(url: str) -> str:
if trafilatura is None:
try:
r = requests.get(url, headers=HEADERS, timeout=12); r.raise_for_status()
txt = re.sub(r"<[^>]+>", " ", r.text)
return normalize_ws(txt)[:8000]
except Exception:
return ""
try:
downloaded = trafilatura.fetch_url(url)
if not downloaded: return ""
txt = trafilatura.extract(downloaded, include_comments=False, include_images=False)
return txt or ""
except Exception:
return ""
def build_web_corpus(claim: str, allowlist: Optional[List[str]] = None, per_query_results: int = 8, chunk_chars: int = 700) -> List[Dict]:
allowlist = allowlist or DEFAULT_ALLOWLIST
s1 = sanitize_claim_for_search(claim)
variants = [claim, s1, keywords_only(s1, 10)] + heuristic_rewrites(s1)
seen, corpus = set(), []
for q in variants:
qn = q.strip()
if not qn or qn.lower() in seen: continue
seen.add(qn.lower())
for h in ddg_search(qn, max_results=per_query_results, allowlist=allowlist):
url = h["url"]; text = fetch_clean_text(url)
if not text: continue
for j, ch in enumerate(split_into_chunks(text, max_chars=chunk_chars)):
corpus.append({"id": f"web-{hash(url)}-{j}", "source":"web", "title": h["title"] or domain_from_url(url),
"url": url, "published": now_iso(), "text": ch})
time.sleep(0.6)
if len(corpus) >= per_query_results * 4: break
return list({d["id"]: d for d in corpus}.values())
# ---------- retrieval ----------
def tokenize_simple(text: str) -> List[str]:
text = re.sub(r"[^a-z0-9\s]", " ", (text or "").lower())
return [w for w in text.split() if w and w not in {"the","a","an","and","or","of","to","in","for","on","with"}]
def rrf_merge(orderings: List[List[str]], k: int = 60) -> List[str]:
scores = {}
for ordering in orderings:
for r, doc_id in enumerate(ordering):
scores[doc_id] = scores.get(doc_id, 0.0) + 1.0/(k + r)
return [doc for doc,_ in sorted(scores.items(), key=lambda x: -x[1])]
BM25Okapi = getattr(rank_bm25, "BM25Okapi", None) if rank_bm25 else None
_emb_model, st_util = None, None
if sentence_transformers:
try:
_emb_model = sentence_transformers.SentenceTransformer("sentence-transformers/multi-qa-MiniLM-L6-cos-v1")
from sentence_transformers import util as st_util
except Exception:
_emb_model, st_util = None, None
def retrieve_hybrid(claim: str, docs: List[Dict], k: int = 8) -> List[Dict]:
if not docs: return []
# BM25 (or overlap fallback)
if BM25Okapi:
corpus_tokens = [tokenize_simple(d["text"]) for d in docs]
bm25 = BM25Okapi(corpus_tokens)
bm25_scores = bm25.get_scores(tokenize_simple(claim))
bm25_order = [docs[i]["id"] for i in list(np.argsort(-np.array(bm25_scores)))]
else:
q_toks = set(tokenize_simple(claim))
overlaps = [(i, len(q_toks.intersection(set(tokenize_simple(d["text"]))))) for i, d in enumerate(docs)]
bm25_order = [docs[i]["id"] for i,_ in sorted(overlaps, key=lambda x: -x[1])]
# Dense (optional)
dense_order = []
if _emb_model and st_util:
try:
q_emb = _emb_model.encode([claim], convert_to_tensor=True, show_progress_bar=False)
d_emb = _emb_model.encode([d["text"] for d in docs], convert_to_tensor=True, show_progress_bar=False)
sims = st_util.cos_sim(q_emb, d_emb).cpu().numpy().ravel()
dense_order = [docs[i]["id"] for i in list(np.argsort(-sims))]
except Exception:
dense_order = bm25_order
ordering = rrf_merge([bm25_order, dense_order or bm25_order], k=60)
top_ids = set(ordering[:max(k, 14)])
id2doc = {d["id"]: d for d in docs}
ranked_docs = [id2doc[i] for i in ordering if i in top_ids]
return [{**doc, "score": float(1/(60+i))} for i, doc in enumerate(ranked_docs[:k])]
# ---------- verifier (transformers optional; heuristic fallback) ----------
_nli = None
if transformers:
try:
AutoModelForSequenceClassification = transformers.AutoModelForSequenceClassification
AutoTokenizer = transformers.AutoTokenizer
_tok = AutoTokenizer.from_pretrained("roberta-large-mnli")
_mdl = AutoModelForSequenceClassification.from_pretrained("roberta-large-mnli")
_nli = transformers.pipeline("text-classification", model=_mdl, tokenizer=_tok,
return_all_scores=True, truncation=True, device=-1)
except Exception:
_nli = None
def verify_with_nli(claim: str, evidence: List[Dict]) -> Dict:
if _nli:
best_ent_id, best_ent_p = None, 0.0
best_con_id, best_con_p = None, 0.0
for e in evidence or []:
prem = (e.get("text") or "").strip()
if not prem: continue
outputs = _nli([{"text": prem, "text_pair": claim}])
probs = {d["label"].upper(): float(d["score"]) for d in outputs[0]}
ent, con = probs.get("ENTAILMENT", 0.0), probs.get("CONTRADICTION", 0.0)
if ent > best_ent_p: best_ent_id, best_ent_p = e.get("id"), ent
if con > best_con_p: best_con_id, best_con_p = e.get("id"), con
label, used = "NEI", []
conf = max(0.34, float(best_ent_p*0.5 + (1-best_con_p)*0.25))
rationale = "Insufficient or inconclusive evidence."
if best_ent_p >= 0.60 and (best_ent_p - best_con_p) >= 0.10:
label, used, conf, rationale = "SUPPORT", [best_ent_id] if best_ent_id else [], best_ent_p, "Top evidence entails the claim."
elif best_con_p >= 0.60 and (best_con_p - best_ent_p) >= 0.10:
label, used, conf, rationale = "REFUTE", [best_con_id] if best_con_id else [], best_con_p, "Top evidence contradicts the claim."
return {"label": label, "used_evidence_ids": used, "confidence": float(conf), "rationale": rationale}
# heuristic fallback
text = " ".join((e.get("text") or "")[:400].lower() for e in evidence[:6])
k = sanitize_claim_for_search(claim).lower()
if any(x in text for x in ["false","hoax","debunked","misinformation","no evidence","not true"]) and any(y in text for y in k.split()[:4]):
return {"label":"REFUTE","used_evidence_ids":[evidence[0]["id"]] if evidence else [],"confidence":0.6,"rationale":"Heuristic: refutation keywords."}
if any(x in text for x in ["confirmed","approved","verified","evidence shows","found that"]) and any(y in text for y in k.split()[:4]):
return {"label":"SUPPORT","used_evidence_ids":[evidence[0]["id"]] if evidence else [],"confidence":0.55,"rationale":"Heuristic: support keywords."}
return {"label":"NEI","used_evidence_ids":[],"confidence":0.4,"rationale":"Insufficient signal without NLI."}
def enforce_json_schema(x: Dict) -> Dict:
return {"label": str(x.get("label","NEI")).upper(),
"used_evidence_ids": [str(i) for i in x.get("used_evidence_ids", []) if i],
"confidence": float(x.get("confidence", 0.5)),
"rationale": str(x.get("rationale","")).strip()[:300]}
def filter_by_time(docs: List[Dict], t_max_iso: str) -> List[Dict]:
try: tmax = datetime.fromisoformat(t_max_iso.replace("Z","+00:00"))
except Exception: tmax = datetime.now(timezone.utc)
kept = []
for d in docs:
try:
dt = datetime.fromisoformat(d["published"].replace("Z","+00:00"))
if dt <= tmax: kept.append(d)
except Exception:
kept.append(d)
return kept
def verify_claim(claim_text: str, use_web: bool = True, use_wiki: bool = True,
allowlist: Optional[List[str]] = None, t_claim_iso: Optional[str] = None, k: int = 8) -> Dict:
t_claim_iso = t_claim_iso or now_iso()
allowlist = allowlist or DEFAULT_ALLOWLIST
docs = []
if use_wiki: docs += build_wiki_corpus(claim_text, max_pages=6, chunk_chars=600)
if use_web: docs += build_web_corpus(claim_text, allowlist=allowlist, per_query_results=8, chunk_chars=700)
corpus_at_t = filter_by_time(docs, t_claim_iso)
top_at_t = retrieve_hybrid(claim_text, corpus_at_t, k=k)
top_now = retrieve_hybrid(claim_text, docs, k=k)
res_t = enforce_json_schema(verify_with_nli(claim_text, top_at_t))
res_n = enforce_json_schema(verify_with_nli(claim_text, top_now))
return {"claim": claim_text, "t_claim": t_claim_iso, "label_at_t": res_t["label"], "label_now": res_n["label"],
"used_evidence_ids_at_t": res_t["used_evidence_ids"], "used_evidence_ids_now": res_n["used_evidence_ids"],
"confidence": float((res_t["confidence"] + res_n["confidence"]) / 2.0),
"rationale": res_n["rationale"] if res_n["rationale"] else res_t["rationale"],
"evidence_top_now": top_now}
def run_on_claims(claims: List[str], use_web: bool, use_wiki: bool, allowlist: List[str], k: int = 8) -> List[Dict]:
outs = []
for c in claims:
c = (c or "").strip()
if not c: continue
outs.append(verify_claim(c, use_web=use_web, use_wiki=use_wiki, allowlist=allowlist, t_claim_iso=now_iso(), k=k))
return outs
# ---------- ASR ----------
def extract_audio_ffmpeg(video_path: str, out_wav: str, sr: int = 16000) -> str:
cmd = ["ffmpeg","-y","-i",video_path,"-vn","-acodec","pcm_s16le","-ar",str(sr),"-ac","1",out_wav]
subprocess.run(cmd, stdout=subprocess.PIPE, stderr=subprocess.PIPE, check=True)
return out_wav
def run_whisper_asr(audio_path: str, model_size: str = "base", language: Optional[str] = None) -> str:
# Prefer faster-whisper
if FWWhisperModel is not None:
device = "cuda" if gpu_available() else "cpu"
compute_type = "float16" if device == "cuda" else "int8"
model = FWWhisperModel(model_size, device=device, compute_type=compute_type)
segments, info = model.transcribe(audio_path, language=language, vad_filter=True, beam_size=5)
return " ".join(seg.text for seg in segments).strip()
# Fallback to OpenAI whisper
if OpenAIWhisper is not None:
model = OpenAIWhisper.load_model(model_size)
result = model.transcribe(audio_path, language=language) if language else model.transcribe(audio_path)
return (result.get("text") or "").strip()
# No backend
return ""
# ---------- OCR (EasyOCR → Tesseract) ----------
def _tess_langs(langs_csv: str) -> str:
map_ = {"en":"eng","ar":"ara","fr":"fra","de":"deu","es":"spa","it":"ita","pt":"por","ru":"rus","zh":"chi_sim"}
codes = [x.strip().lower() for x in (langs_csv or "en").split(",") if x.strip()]
return "+".join(map_.get(c, c) for c in codes) or "eng"
def preprocess_for_ocr(img_path: str):
if cv2 is None: return None
img = cv2.imread(img_path, cv2.IMREAD_COLOR)
if img is None: return None
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
gray = cv2.bilateralFilter(gray, 7, 50, 50)
gray = cv2.equalizeHist(gray)
th = cv2.adaptiveThreshold(gray, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C,
cv2.THRESH_BINARY, 31, 9)
return th
def _ocr_with_easyocr(frames: List[str], langs_csv: str, max_images: Optional[int]) -> List[str]:
if not (_easyocr and cv2): return []
try:
gpu = gpu_available()
reader = _easyocr.Reader([c.strip() for c in langs_csv.split(",") if c.strip()], gpu=gpu)
texts, count = [], 0
for fp in frames:
if max_images and count >= max_images: break
img = preprocess_for_ocr(fp)
if img is None:
count += 1;
continue
for (_bbox, txt, conf) in reader.readtext(img):
txt = normalize_ws(txt)
if txt and conf >= 0.35: texts.append(txt)
count += 1
uniq, seen = [], set()
for t in texts:
k = t.lower()
if k not in seen: uniq.append(t); seen.add(k)
return uniq
except Exception:
return []
def _ocr_with_tesseract(frames: List[str], langs_csv: str, max_images: Optional[int]) -> List[str]:
if not (_pyt and shutil.which("tesseract") and cv2): return []
lang = _tess_langs(langs_csv)
texts, count = [], 0
for fp in frames:
if max_images and count >= max_images: break
img = preprocess_for_ocr(fp)
if img is None:
count += 1;
continue
try:
raw = _pyt.image_to_string(img, lang=lang)
except Exception:
try:
raw = _pyt.image_to_string(img, lang="eng")
except Exception:
raw = ""
for line in (raw or "").splitlines():
line = normalize_ws(line)
if len(line) >= 3: texts.append(line)
count += 1
uniq, seen = [], set()
for t in texts:
k = t.lower()
if k not in seen: uniq.append(t); seen.add(k)
return uniq
def run_ocr_on_frames(frames: List[str], languages: str = "en", max_images: Optional[int] = None) -> List[str]:
langs_csv = languages or "en"
out = _ocr_with_easyocr(frames, langs_csv, max_images)
if out: return out
out = _ocr_with_tesseract(frames, langs_csv, max_images)
return out
# ---------- video processing ----------
def download_video(url: str, out_dir: str = "videos") -> str:
os.makedirs(out_dir, exist_ok=True)
out_tpl = os.path.join(out_dir, "%(title)s.%(ext)s")
subprocess.run(["yt-dlp","-o",out_tpl,url], check=True)
files = sorted(glob.glob(os.path.join(out_dir, "*")), key=os.path.getmtime)
return files[-1] if files else ""
def sample_frames_ffmpeg(video_path: str, out_dir: str = "frames", fps: float = 0.5) -> List[str]:
os.makedirs(out_dir, exist_ok=True)
try:
subprocess.run(["ffmpeg","-y","-i",video_path,"-vf",f"fps={fps}", os.path.join(out_dir, "frame_%06d.jpg")],
stdout=subprocess.PIPE, stderr=subprocess.PIPE, check=True)
except Exception:
return []
return sorted(glob.glob(os.path.join(out_dir, "frame_*.jpg")))
def aggregate_text(asr_text: str, ocr_lines: List[str]) -> str:
parts = []
if asr_text: parts.append(asr_text)
if ocr_lines: parts.append("\n".join(ocr_lines))
agg = normalize_ws("\n".join(parts))
uniq_lines, seen = [], set()
for line in agg.split("\n"):
k = line.strip().lower()
if k and k not in seen: uniq_lines.append(line.strip()); seen.add(k)
return "\n".join(uniq_lines)
def suggest_claims(text: str, top_k: int = 10) -> List[str]:
sents = [re.sub(r'^[\'"“”]+|[\'"“”]+$', '', x).strip() for x in re.split(r'[.!?\n]+', text or "") if x.strip()]
candidates = [s for s in sents if len(s) >= 12 and re.search(r"\b(is|are|was|were|has|have|had|will|can|does|did|cause|causes|leads|led|prove|proves|confirm|confirms|predict|predicts|announce|announces|claim|claims|say|says|warn|warns|plan|plans|declare|declares|ban|bans|approve|approves)\b", s, re.I)]
if not candidates:
fallback = [s for s in sents if 8 <= len(s) <= 140]
scored = []
for s in fallback:
score = (1 if re.search(r'\d', s) else 0) + sum(1 for w in s.split()[:6] if w[:1].isupper())
scored.append((score, s))
candidates = [s for _, s in sorted(scored, key=lambda x: -x[0])[:top_k]]
return candidates[:top_k]
def process_video(video_file: Optional[str] = None, video_url: Optional[str] = None,
whisper_model: str = "base", asr_language: Optional[str] = None,
ocr_langs: str = "en", fps: float = 0.5, max_ocr_images: int = 200) -> Dict:
workdir = f"session_{uuid.uuid4().hex[:8]}"; os.makedirs(workdir, exist_ok=True)
# pick source
if video_url and video_url.strip():
vp = download_video(video_url.strip(), out_dir=workdir)
elif video_file and os.path.exists(video_file):
vp = shutil.copy(video_file, os.path.join(workdir, os.path.basename(video_file)))
else:
raise ValueError("Provide either a local video file path or a URL.")
# audio
wav = os.path.join(workdir, "audio_16k.wav")
if not ffmpeg_available():
raise RuntimeError("ffmpeg binary not found. Ensure apt.txt includes 'ffmpeg'.")
extract_audio_ffmpeg(vp, wav, sr=16000)
# ASR (never hard-fail)
asr_text = ""
try:
asr_text = run_whisper_asr(wav, model_size=whisper_model, language=asr_language)
if not asr_text:
asr_text = "[ASR skipped: no backend available]"
except Exception as e:
asr_text = f"[ASR skipped: {e}]"
open(os.path.join(workdir, "transcript_asr.txt"), "w").write(asr_text)
# frames
frames_dir = os.path.join(workdir, "frames")
frames = sample_frames_ffmpeg(vp, out_dir=frames_dir, fps=fps)
# OCR (never hard-fail)
ocr_lines = []
try:
if frames:
ocr_lines = run_ocr_on_frames(frames, languages=ocr_langs, max_images=int(max_ocr_images))
else:
ocr_lines = []
except Exception as e:
ocr_lines = [f"[OCR error: {e}]"]
if not ocr_lines:
ocr_lines = ["[OCR skipped: no backend available]"]
open(os.path.join(workdir, "transcript_ocr.txt"), "w").write("\n".join(ocr_lines))
# aggregate + suggestions
agg = aggregate_text(asr_text, ocr_lines)
open(os.path.join(workdir, "transcript_aggregated.txt"), "w").write(agg)
suggestions = suggest_claims(agg, top_k=10)
return {"workdir": workdir, "video_path": vp, "asr_text": asr_text, "ocr_lines": ocr_lines,
"aggregated_text": agg, "suggested_claims": suggestions}
# ---------- Gradio UI ----------
THEME_CSS = """
<style>
body, .gradio-container {
background: radial-gradient(1200px 600px at 20% -10%, rgba(122,60,255,0.20), transparent 50%),
radial-gradient(1000px 400px at 80% 10%, rgba(0,179,255,0.14), transparent 50%),
linear-gradient(180deg, #0f1020, #0a0a12) !important;
color: #fff;
}
.glass { background: rgba(255,255,255,0.06); backdrop-filter: blur(8px);
border: 1px solid rgba(255,255,255,0.08); border-radius: 18px !important; }
.neon-btn { background: linear-gradient(90deg, rgba(122,60,255,0.9), rgba(0,179,255,0.9));
border-radius: 12px; color: white; box-shadow: 0 0 24px rgba(122,60,255,0.35); }
.neon-title { background: linear-gradient(90deg, #b28cff, #7a3cff, #00b3ff);
-webkit-background-clip: text; -webkit-text-fill-color: transparent; font-weight: 900; }
</style>
"""
def ui_run_factcheck(claims_text: str, use_web: bool, use_wiki: bool, allowlist_str: str):
claims = [c.strip() for c in (claims_text or "").splitlines() if c.strip()]
if not claims: return "Please enter one claim per line.", None
allow = [d.strip() for d in (allowlist_str or ", ".join(DEFAULT_ALLOWLIST)).split(",") if d.strip()]
res = run_on_claims(claims, use_web=use_web, use_wiki=use_wiki, allowlist=allow, k=8)
rows, cards = [], []
for v in res:
lines = ["─"*74, f"CLAIM: {v['claim']}", f"t_claim: {v['t_claim']}",
f"verdict@T: {v['label_at_t']} | verdict@Now: {v['label_now']} | confidence: {v['confidence']:.2f}",
f"rationale: {v.get('rationale','')}"]
evs = v.get("evidence_top_now", []) or []
if not evs: lines.append("EVIDENCE: (none retrieved)")
else:
lines.append("EVIDENCE (top):")
for e in evs[:6]:
snippet = (e.get("text","") or "").replace("\n"," ")
snippet = (snippet[:220] + "...") if len(snippet) > 220 else snippet
title = e.get("title","") or e.get("source","")
lines.append(f" • [{title}] {e.get('url','')}")
lines.append(f" {snippet}")
cards.append("\n".join(lines))
rows.append({"claim": v["claim"], "verdict_at_t": v["label_at_t"], "verdict_now": v["label_now"],
"confidence": round(float(v["confidence"]), 3),
"used_ids": "|".join(v.get("used_evidence_ids_now", []))})
df = pd.DataFrame(rows)
return "\n\n".join(cards), df
def ui_ingest_and_suggest(video_file, video_url, whisper_model, asr_language, ocr_langs, fps, max_ocr_images):
try: vp = video_file.name if video_file else None
except Exception: vp = None
out = process_video(video_file=vp, video_url=video_url,
whisper_model=whisper_model, asr_language=asr_language or None,
ocr_langs=ocr_langs, fps=float(fps), max_ocr_images=int(max_ocr_images))
asr_preview = (out["asr_text"][:1200] + "...") if len(out["asr_text"]) > 1200 else out["asr_text"]
ocr_preview = "\n".join(out["ocr_lines"][:50])
agg_preview = (out["aggregated_text"][:2000] + "...") if len(out["aggregated_text"]) > 2000 else out["aggregated_text"]
sugg = "\n".join(out["suggested_claims"])
return asr_preview, ocr_preview, agg_preview, sugg, sugg
def run_diagnostics():
lines = []
lines.append(f"FFmpeg: {'found' if ffmpeg_available() else 'NOT found'}")
lines.append(f"GPU: {'available' if gpu_available() else 'CPU only'}")
lines.append(f"ASR backends: {', '.join(asr_backends()) or 'none'}")
lines.append(f"OCR backends: {', '.join(ocr_backends()) or 'none'}")
# ffmpeg version
try:
v = subprocess.run(['ffmpeg','-version'], stdout=subprocess.PIPE, stderr=subprocess.PIPE, text=True, timeout=5)
lines.append(v.stdout.splitlines()[0])
except Exception as e:
lines.append(f"ffmpeg version: {e}")
# tesseract version
try:
if shutil.which("tesseract"):
tv = subprocess.run(['tesseract','-v'], stdout=subprocess.PIPE, stderr=subprocess.PIPE, text=True, timeout=5)
lines.append("Tesseract: " + tv.stdout.splitlines()[0])
else:
lines.append("Tesseract: NOT found on PATH")
except Exception as e:
lines.append(f"Tesseract: {e}")
# EasyOCR smoke (import only)
lines.append(f"EasyOCR import: {'ok' if _easyocr else 'fail'}; OpenCV: {'ok' if cv2 is not None else 'fail'}")
# Create a quick OCR synthetic test with Tesseract if available
try:
from PIL import Image, ImageDraw
img = Image.new("RGB", (480, 120), (255,255,255))
d = ImageDraw.Draw(img); d.text((10,40), "AEGIS TEST 123", fill=(0,0,0))
tmp = f"diag_{uuid.uuid4().hex[:6]}.png"; img.save(tmp)
o = run_ocr_on_frames([tmp], languages="en", max_images=1)
os.remove(tmp)
lines.append("OCR synthetic test: " + ("OK: " + " | ".join(o) if o else "no text read"))
except Exception as e:
lines.append(f"OCR synthetic test error: {e}")
return "\n".join(lines)
with gr.Blocks(css=THEME_CSS, fill_height=True) as demo:
gr.HTML("<h1 class='neon-title' style='font-size:42px;margin:8px 0;'>Claim Checker</h1><p style='opacity:.75;margin:-6px 0 18px;'>Make every claim earn its proof.</p>")
with gr.Tab("Manual Claims"):
with gr.Row():
with gr.Column(scale=1):
claims_box = gr.Textbox(label="Claims (one per line)", lines=8, placeholder="e.g. 5G towers caused COVID-19", elem_classes=["glass"])
with gr.Row():
use_web = gr.Checkbox(value=True, label="Use Web retrieval")
use_wiki = gr.Checkbox(value=True, label="Use Wikipedia")
#allowlist_box = gr.Textbox(label="Domain allowlist (comma-separated)", value=DEFAULT_ALLOWLIST, lines=2)
run_btn = gr.Button("Run Fact-Check")
with gr.Column(scale=1):
out_text = gr.Textbox(label="Verdicts + Sources", lines=18, interactive=False, elem_classes=["glass"])
out_df = gr.Dataframe(label="Structured Results", interactive=False)
run_btn.click(ui_run_factcheck,
inputs=[claims_box, use_web, use_wiki],
outputs=[out_text, out_df])
with gr.Tab("Video Ingest (ASR + OCR)"):
gr.Markdown("Upload a video **OR** provide a URL. Whisper + EasyOCR/Tesseract run; text is aggregated and claims suggested.")
with gr.Row():
with gr.Column(scale=1):
video_upload = gr.File(label="Upload video (mp4/mov/mkv...)", file_types=["video"])
video_url = gr.Textbox(label="Or paste video URL (YouTube/direct link)")
with gr.Row():
whisper_model = gr.Dropdown(choices=["tiny","base","small","medium"], value="base", label="Whisper model")
asr_language = gr.Textbox(label="ASR language hint (optional, e.g., en, ar)")
with gr.Row():
ocr_langs = gr.Textbox(value="en", label="OCR languages (comma-separated, e.g., en,ar)")
fps = gr.Slider(minimum=0.2, maximum=2.0, value=0.5, step=0.1, label="OCR frame sampling FPS")
max_ocr_images = gr.Slider(minimum=20, maximum=600, value=200, step=10, label="Max frames for OCR")
run_ingest = gr.Button("Ingest Video (ASR + OCR)", elem_classes=["neon-btn"])
with gr.Column(scale=1):
asr_out = gr.Textbox(label="ASR Transcript (preview)", lines=10, elem_classes=["glass"])
ocr_out = gr.Textbox(label="OCR Lines (preview)", lines=10, elem_classes=["glass"])
agg_out = gr.Textbox(label="Aggregated Text (preview)", lines=12, elem_classes=["glass"])
sugg_out = gr.Textbox(label="Suggested Claims", lines=10, elem_classes=["glass"])
to_manual = gr.Textbox(label="Copy to Manual Claims", lines=8, elem_classes=["glass"])
run_ingest.click(ui_ingest_and_suggest,
inputs=[video_upload, video_url, whisper_model, asr_language, ocr_langs, fps, max_ocr_images],
outputs=[asr_out, ocr_out, agg_out, sugg_out, to_manual])
demo.launch()