Spaces:
Sleeping
Sleeping
File size: 32,976 Bytes
441b2ed 22c814c 441b2ed 22c814c 441b2ed fd7e8af 22c814c cb43936 22c814c cb43936 441b2ed fd7e8af 441b2ed fd7e8af 441b2ed 5455989 441b2ed b9325a4 441b2ed b9325a4 441b2ed 2d1d201 441b2ed 22c814c 441b2ed fd7e8af 441b2ed 22c814c fd7e8af 22c814c fd7e8af 22c814c fd7e8af 22c814c fd7e8af 22c814c 441b2ed fd7e8af 22c814c 441b2ed fd7e8af 22c814c 441b2ed 22c814c 441b2ed 22c814c fd7e8af 441b2ed fd7e8af 441b2ed 22c814c 441b2ed fd7e8af 22c814c fd7e8af 441b2ed fd7e8af 441b2ed fd7e8af 441b2ed 22c814c fd7e8af 441b2ed fd7e8af 441b2ed fd7e8af 441b2ed fd7e8af 441b2ed 22c814c fd7e8af 441b2ed fd7e8af 22c814c fd7e8af 22c814c fd7e8af 441b2ed 22c814c fd7e8af 441b2ed 22c814c 441b2ed 5455989 441b2ed 5455989 2d1d201 5455989 441b2ed 5455989 2d1d201 5455989 441b2ed 5455989 441b2ed 2d1d201 441b2ed 2d1d201 441b2ed b9325a4 441b2ed b9325a4 441b2ed b9325a4 441b2ed b9325a4 441b2ed b9325a4 441b2ed b9325a4 441b2ed b9325a4 441b2ed 22c814c 441b2ed 22c814c 441b2ed 22c814c 441b2ed 22c814c 441b2ed 22c814c 441b2ed 22c814c 441b2ed 22c814c 441b2ed b9325a4 22c814c 441b2ed 22c814c 441b2ed 22c814c 441b2ed 22c814c 441b2ed 22c814c 441b2ed 22c814c fd7e8af 22c814c fd7e8af 22c814c 441b2ed 22c814c 441b2ed 22c814c 21fd184 22c814c 21fd184 22c814c 86bdc67 cd17c13 cb43936 22c814c cb43936 22c814c 441b2ed 22c814c 21fd184 441b2ed 22c814c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 |
# app.py β resilient ASR/OCR with Diagnostics (no NLTK)
from __future__ import annotations
import os, re, json, time, glob, uuid, shutil, subprocess, urllib.parse, io
from typing import List, Dict, Optional
from datetime import datetime, timezone
import numpy as np
import pandas as pd
import requests
import gradio as gr
# ---------- small helpers ----------
def now_iso(): return datetime.now(timezone.utc).isoformat()
def normalize_ws(s: str) -> str: return re.sub(r"\s+", " ", s or "").strip()
def sent_tokenize(txt: str) -> List[str]:
return [s.strip() for s in re.split(r'(?<=[.!?])\s+|\n+', txt or '') if s.strip()]
def domain_from_url(url: str) -> str:
try: return urllib.parse.urlparse(url).netloc.lower()
except Exception: return ""
USER_AGENT = "DisinfoFactcheck/1.0 (contact: [email protected])"
HEADERS = {"User-Agent": USER_AGENT}
DEFAULT_ALLOWLIST = [
"who.int","cdc.gov","nih.gov","ema.europa.eu","ecdc.europa.eu",
"reuters.com","apnews.com","associatedpress.com","bbc.com","bbc.co.uk",
"nytimes.com","washingtonpost.com","theguardian.com",
"factcheck.org","snopes.com","fullfact.org","politifact.com",
"un.org","unesco.org","oecd.org","worldbank.org","imf.org",
"nature.com","sciencemag.org","thelancet.com","nejm.org",
"britannica.com","nationalgeographic.com","history.com","worldhistory.org",
"smithsonianmag.com","metmuseum.org","egypt.travel"
]
# ---------- guarded imports ----------
def _try(name):
try: return __import__(name)
except Exception: return None
duckduckgo_search = _try("duckduckgo_search")
trafilatura = _try("trafilatura")
rank_bm25 = _try("rank_bm25")
sentence_transformers = _try("sentence_transformers")
transformers = _try("transformers")
# ASR backends
try:
from faster_whisper import WhisperModel as FWWhisperModel
except Exception:
FWWhisperModel = None
try:
import whisper as OpenAIWhisper
except Exception:
OpenAIWhisper = None
# OCR backends
try:
import easyocr as _easyocr
except Exception:
_easyocr = None
try:
import pytesseract as _pyt
except Exception:
_pyt = None
try:
import cv2
except Exception:
cv2 = None
# ---------- env probes ----------
def ffmpeg_available() -> bool:
return bool(shutil.which("ffmpeg"))
def gpu_available() -> bool:
return bool(shutil.which("nvidia-smi"))
def asr_backends():
b = []
if FWWhisperModel: b.append("faster-whisper")
if OpenAIWhisper: b.append("openai-whisper")
return b
def ocr_backends():
b = []
if _easyocr and cv2: b.append("easyocr")
if _pyt and shutil.which("tesseract"): b.append("tesseract")
return b
# ---------- text chunking ----------
def split_into_chunks(text: str, max_chars: int = 700) -> List[str]:
sents = [normalize_ws(s) for s in sent_tokenize(text or "")]
chunks, cur = [], ""
for s in sents:
if len(cur) + 1 + len(s) > max_chars and cur:
chunks.append(cur.strip()); cur = s
else:
cur = (cur + " " + s).strip()
if cur: chunks.append(cur.strip())
return [c for c in chunks if len(c) > 40]
# ---------- Wikipedia ----------
WIKI_API = "https://en.wikipedia.org/w/api.php"
def wiki_search(query: str, n: int = 6) -> List[Dict]:
r = requests.get(WIKI_API, params={"action":"query","list":"search","srsearch":query,"srlimit":n,"format":"json"},
headers=HEADERS, timeout=20)
r.raise_for_status()
return r.json().get("query",{}).get("search",[])
def wiki_page_content(pageid: int) -> Dict:
r = requests.get(WIKI_API, params={"action":"query","prop":"extracts|info|revisions","pageids":pageid,"inprop":"url",
"rvprop":"timestamp","explaintext":1,"format":"json"},
headers=HEADERS, timeout=20)
r.raise_for_status()
page = next(iter(r.json().get("query",{}).get("pages",{}).values()))
return {"pageid": page.get("pageid"), "title": page.get("title"), "url": page.get("fullurl"),
"last_modified": (page.get("revisions") or [{}])[0].get("timestamp"), "text": page.get("extract") or ""}
REPORTING_PREFIXES = re.compile(r'^(from a video:|another line says:|it also claims:|the video says:|the speaker claims:|someone said:)', re.I)
STOP = {"the","a","an","from","it","also","claims","claim","says","said","line","video","across","cities","that","this","these","those","is","are","was","were","has","have","had","will","can","does","did"}
def sanitize_claim_for_search(s: str) -> str:
s = REPORTING_PREFIXES.sub('', (s or "").strip()).strip('"\'' )
s = re.sub(r"[^A-Za-z0-9\s-]", " ", s)
return re.sub(r"\s+", " ", s).strip()
def keywords_only(s: str, limit: int = 10) -> str:
toks = [w for w in s.lower().split() if w not in STOP]
return " ".join(toks[:limit]) or s
def heuristic_rewrites(s: str) -> List[str]:
rewrites = [s, s + " misinformation"]
rewrites.append(re.sub(r"5g[^\w]+.*covid[- ]?19", "5G COVID-19 conspiracy", s, flags=re.I))
rewrites.append(re.sub(r"owns?\s+the\s+world\s+health\s+organization", "Bill Gates WHO relationship", s, flags=re.I))
rewrites.append(re.sub(r"nasa[^\w]+.*darkness", "NASA hoax darkness", s, flags=re.I))
return list(dict.fromkeys([sanitize_claim_for_search(x) for x in rewrites]))
def build_wiki_corpus(claim: str, max_pages: int = 6, chunk_chars: int = 600) -> List[Dict]:
s1 = sanitize_claim_for_search(claim)
variants = [claim, s1, keywords_only(s1, 10)] + heuristic_rewrites(s1)
seen, corpus = set(), []
for q in variants:
qn = q.strip()
if not qn or qn.lower() in seen: continue
seen.add(qn.lower())
for res in wiki_search(qn, n=max_pages):
pg = wiki_page_content(res["pageid"])
if not pg["text"]: continue
for j, ch in enumerate(split_into_chunks(pg["text"], max_chars=chunk_chars)):
corpus.append({"id": f"wiki-{pg['pageid']}-{j}", "source":"wikipedia", "pageid": pg["pageid"],
"title": pg["title"], "url": pg["url"], "published": pg["last_modified"] or now_iso(),
"text": ch})
if len(corpus) >= max_pages * 2: break
return list({d["id"]: d for d in corpus}.values())
# ---------- Web retrieval ----------
def ddg_search(query: str, max_results: int = 10, allowlist: Optional[List[str]] = None) -> List[Dict]:
if duckduckgo_search is None: return []
DDGS = duckduckgo_search.DDGS
allowlist = allowlist or DEFAULT_ALLOWLIST
out = []
with DDGS() as ddgs:
for r in ddgs.text(query, region="wt-wt", safesearch="moderate", timelimit=None, max_results=max_results):
url = r.get("href") or r.get("url") or ""
if url and any(domain_from_url(url).endswith(dom) for dom in allowlist):
out.append({"title": r.get("title",""), "url": url, "snippet": r.get("body","")})
return out
def fetch_clean_text(url: str) -> str:
if trafilatura is None:
try:
r = requests.get(url, headers=HEADERS, timeout=12); r.raise_for_status()
txt = re.sub(r"<[^>]+>", " ", r.text)
return normalize_ws(txt)[:8000]
except Exception:
return ""
try:
downloaded = trafilatura.fetch_url(url)
if not downloaded: return ""
txt = trafilatura.extract(downloaded, include_comments=False, include_images=False)
return txt or ""
except Exception:
return ""
def build_web_corpus(claim: str, allowlist: Optional[List[str]] = None, per_query_results: int = 8, chunk_chars: int = 700) -> List[Dict]:
allowlist = allowlist or DEFAULT_ALLOWLIST
s1 = sanitize_claim_for_search(claim)
variants = [claim, s1, keywords_only(s1, 10)] + heuristic_rewrites(s1)
seen, corpus = set(), []
for q in variants:
qn = q.strip()
if not qn or qn.lower() in seen: continue
seen.add(qn.lower())
for h in ddg_search(qn, max_results=per_query_results, allowlist=allowlist):
url = h["url"]; text = fetch_clean_text(url)
if not text: continue
for j, ch in enumerate(split_into_chunks(text, max_chars=chunk_chars)):
corpus.append({"id": f"web-{hash(url)}-{j}", "source":"web", "title": h["title"] or domain_from_url(url),
"url": url, "published": now_iso(), "text": ch})
time.sleep(0.6)
if len(corpus) >= per_query_results * 4: break
return list({d["id"]: d for d in corpus}.values())
# ---------- retrieval ----------
def tokenize_simple(text: str) -> List[str]:
text = re.sub(r"[^a-z0-9\s]", " ", (text or "").lower())
return [w for w in text.split() if w and w not in {"the","a","an","and","or","of","to","in","for","on","with"}]
def rrf_merge(orderings: List[List[str]], k: int = 60) -> List[str]:
scores = {}
for ordering in orderings:
for r, doc_id in enumerate(ordering):
scores[doc_id] = scores.get(doc_id, 0.0) + 1.0/(k + r)
return [doc for doc,_ in sorted(scores.items(), key=lambda x: -x[1])]
BM25Okapi = getattr(rank_bm25, "BM25Okapi", None) if rank_bm25 else None
_emb_model, st_util = None, None
if sentence_transformers:
try:
_emb_model = sentence_transformers.SentenceTransformer("sentence-transformers/multi-qa-MiniLM-L6-cos-v1")
from sentence_transformers import util as st_util
except Exception:
_emb_model, st_util = None, None
def retrieve_hybrid(claim: str, docs: List[Dict], k: int = 8) -> List[Dict]:
if not docs: return []
# BM25 (or overlap fallback)
if BM25Okapi:
corpus_tokens = [tokenize_simple(d["text"]) for d in docs]
bm25 = BM25Okapi(corpus_tokens)
bm25_scores = bm25.get_scores(tokenize_simple(claim))
bm25_order = [docs[i]["id"] for i in list(np.argsort(-np.array(bm25_scores)))]
else:
q_toks = set(tokenize_simple(claim))
overlaps = [(i, len(q_toks.intersection(set(tokenize_simple(d["text"]))))) for i, d in enumerate(docs)]
bm25_order = [docs[i]["id"] for i,_ in sorted(overlaps, key=lambda x: -x[1])]
# Dense (optional)
dense_order = []
if _emb_model and st_util:
try:
q_emb = _emb_model.encode([claim], convert_to_tensor=True, show_progress_bar=False)
d_emb = _emb_model.encode([d["text"] for d in docs], convert_to_tensor=True, show_progress_bar=False)
sims = st_util.cos_sim(q_emb, d_emb).cpu().numpy().ravel()
dense_order = [docs[i]["id"] for i in list(np.argsort(-sims))]
except Exception:
dense_order = bm25_order
ordering = rrf_merge([bm25_order, dense_order or bm25_order], k=60)
top_ids = set(ordering[:max(k, 14)])
id2doc = {d["id"]: d for d in docs}
ranked_docs = [id2doc[i] for i in ordering if i in top_ids]
return [{**doc, "score": float(1/(60+i))} for i, doc in enumerate(ranked_docs[:k])]
# ---------- verifier (transformers optional; heuristic fallback) ----------
_nli = None
if transformers:
try:
AutoModelForSequenceClassification = transformers.AutoModelForSequenceClassification
AutoTokenizer = transformers.AutoTokenizer
_tok = AutoTokenizer.from_pretrained("roberta-large-mnli")
_mdl = AutoModelForSequenceClassification.from_pretrained("roberta-large-mnli")
_nli = transformers.pipeline("text-classification", model=_mdl, tokenizer=_tok,
return_all_scores=True, truncation=True, device=-1)
except Exception:
_nli = None
def verify_with_nli(claim: str, evidence: List[Dict]) -> Dict:
if _nli:
best_ent_id, best_ent_p = None, 0.0
best_con_id, best_con_p = None, 0.0
for e in evidence or []:
prem = (e.get("text") or "").strip()
if not prem: continue
outputs = _nli([{"text": prem, "text_pair": claim}])
probs = {d["label"].upper(): float(d["score"]) for d in outputs[0]}
ent, con = probs.get("ENTAILMENT", 0.0), probs.get("CONTRADICTION", 0.0)
if ent > best_ent_p: best_ent_id, best_ent_p = e.get("id"), ent
if con > best_con_p: best_con_id, best_con_p = e.get("id"), con
label, used = "NEI", []
conf = max(0.34, float(best_ent_p*0.5 + (1-best_con_p)*0.25))
rationale = "Insufficient or inconclusive evidence."
if best_ent_p >= 0.60 and (best_ent_p - best_con_p) >= 0.10:
label, used, conf, rationale = "SUPPORT", [best_ent_id] if best_ent_id else [], best_ent_p, "Top evidence entails the claim."
elif best_con_p >= 0.60 and (best_con_p - best_ent_p) >= 0.10:
label, used, conf, rationale = "REFUTE", [best_con_id] if best_con_id else [], best_con_p, "Top evidence contradicts the claim."
return {"label": label, "used_evidence_ids": used, "confidence": float(conf), "rationale": rationale}
# heuristic fallback
text = " ".join((e.get("text") or "")[:400].lower() for e in evidence[:6])
k = sanitize_claim_for_search(claim).lower()
if any(x in text for x in ["false","hoax","debunked","misinformation","no evidence","not true"]) and any(y in text for y in k.split()[:4]):
return {"label":"REFUTE","used_evidence_ids":[evidence[0]["id"]] if evidence else [],"confidence":0.6,"rationale":"Heuristic: refutation keywords."}
if any(x in text for x in ["confirmed","approved","verified","evidence shows","found that"]) and any(y in text for y in k.split()[:4]):
return {"label":"SUPPORT","used_evidence_ids":[evidence[0]["id"]] if evidence else [],"confidence":0.55,"rationale":"Heuristic: support keywords."}
return {"label":"NEI","used_evidence_ids":[],"confidence":0.4,"rationale":"Insufficient signal without NLI."}
def enforce_json_schema(x: Dict) -> Dict:
return {"label": str(x.get("label","NEI")).upper(),
"used_evidence_ids": [str(i) for i in x.get("used_evidence_ids", []) if i],
"confidence": float(x.get("confidence", 0.5)),
"rationale": str(x.get("rationale","")).strip()[:300]}
def filter_by_time(docs: List[Dict], t_max_iso: str) -> List[Dict]:
try: tmax = datetime.fromisoformat(t_max_iso.replace("Z","+00:00"))
except Exception: tmax = datetime.now(timezone.utc)
kept = []
for d in docs:
try:
dt = datetime.fromisoformat(d["published"].replace("Z","+00:00"))
if dt <= tmax: kept.append(d)
except Exception:
kept.append(d)
return kept
def verify_claim(claim_text: str, use_web: bool = True, use_wiki: bool = True,
allowlist: Optional[List[str]] = None, t_claim_iso: Optional[str] = None, k: int = 8) -> Dict:
t_claim_iso = t_claim_iso or now_iso()
allowlist = allowlist or DEFAULT_ALLOWLIST
docs = []
if use_wiki: docs += build_wiki_corpus(claim_text, max_pages=6, chunk_chars=600)
if use_web: docs += build_web_corpus(claim_text, allowlist=allowlist, per_query_results=8, chunk_chars=700)
corpus_at_t = filter_by_time(docs, t_claim_iso)
top_at_t = retrieve_hybrid(claim_text, corpus_at_t, k=k)
top_now = retrieve_hybrid(claim_text, docs, k=k)
res_t = enforce_json_schema(verify_with_nli(claim_text, top_at_t))
res_n = enforce_json_schema(verify_with_nli(claim_text, top_now))
return {"claim": claim_text, "t_claim": t_claim_iso, "label_at_t": res_t["label"], "label_now": res_n["label"],
"used_evidence_ids_at_t": res_t["used_evidence_ids"], "used_evidence_ids_now": res_n["used_evidence_ids"],
"confidence": float((res_t["confidence"] + res_n["confidence"]) / 2.0),
"rationale": res_n["rationale"] if res_n["rationale"] else res_t["rationale"],
"evidence_top_now": top_now}
def run_on_claims(claims: List[str], use_web: bool, use_wiki: bool, allowlist: List[str], k: int = 8) -> List[Dict]:
outs = []
for c in claims:
c = (c or "").strip()
if not c: continue
outs.append(verify_claim(c, use_web=use_web, use_wiki=use_wiki, allowlist=allowlist, t_claim_iso=now_iso(), k=k))
return outs
# ---------- ASR ----------
def extract_audio_ffmpeg(video_path: str, out_wav: str, sr: int = 16000) -> str:
cmd = ["ffmpeg","-y","-i",video_path,"-vn","-acodec","pcm_s16le","-ar",str(sr),"-ac","1",out_wav]
subprocess.run(cmd, stdout=subprocess.PIPE, stderr=subprocess.PIPE, check=True)
return out_wav
def run_whisper_asr(audio_path: str, model_size: str = "base", language: Optional[str] = None) -> str:
# Prefer faster-whisper
if FWWhisperModel is not None:
device = "cuda" if gpu_available() else "cpu"
compute_type = "float16" if device == "cuda" else "int8"
model = FWWhisperModel(model_size, device=device, compute_type=compute_type)
segments, info = model.transcribe(audio_path, language=language, vad_filter=True, beam_size=5)
return " ".join(seg.text for seg in segments).strip()
# Fallback to OpenAI whisper
if OpenAIWhisper is not None:
model = OpenAIWhisper.load_model(model_size)
result = model.transcribe(audio_path, language=language) if language else model.transcribe(audio_path)
return (result.get("text") or "").strip()
# No backend
return ""
# ---------- OCR (EasyOCR β Tesseract) ----------
def _tess_langs(langs_csv: str) -> str:
map_ = {"en":"eng","ar":"ara","fr":"fra","de":"deu","es":"spa","it":"ita","pt":"por","ru":"rus","zh":"chi_sim"}
codes = [x.strip().lower() for x in (langs_csv or "en").split(",") if x.strip()]
return "+".join(map_.get(c, c) for c in codes) or "eng"
def preprocess_for_ocr(img_path: str):
if cv2 is None: return None
img = cv2.imread(img_path, cv2.IMREAD_COLOR)
if img is None: return None
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
gray = cv2.bilateralFilter(gray, 7, 50, 50)
gray = cv2.equalizeHist(gray)
th = cv2.adaptiveThreshold(gray, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C,
cv2.THRESH_BINARY, 31, 9)
return th
def _ocr_with_easyocr(frames: List[str], langs_csv: str, max_images: Optional[int]) -> List[str]:
if not (_easyocr and cv2): return []
try:
gpu = gpu_available()
reader = _easyocr.Reader([c.strip() for c in langs_csv.split(",") if c.strip()], gpu=gpu)
texts, count = [], 0
for fp in frames:
if max_images and count >= max_images: break
img = preprocess_for_ocr(fp)
if img is None:
count += 1;
continue
for (_bbox, txt, conf) in reader.readtext(img):
txt = normalize_ws(txt)
if txt and conf >= 0.35: texts.append(txt)
count += 1
uniq, seen = [], set()
for t in texts:
k = t.lower()
if k not in seen: uniq.append(t); seen.add(k)
return uniq
except Exception:
return []
def _ocr_with_tesseract(frames: List[str], langs_csv: str, max_images: Optional[int]) -> List[str]:
if not (_pyt and shutil.which("tesseract") and cv2): return []
lang = _tess_langs(langs_csv)
texts, count = [], 0
for fp in frames:
if max_images and count >= max_images: break
img = preprocess_for_ocr(fp)
if img is None:
count += 1;
continue
try:
raw = _pyt.image_to_string(img, lang=lang)
except Exception:
try:
raw = _pyt.image_to_string(img, lang="eng")
except Exception:
raw = ""
for line in (raw or "").splitlines():
line = normalize_ws(line)
if len(line) >= 3: texts.append(line)
count += 1
uniq, seen = [], set()
for t in texts:
k = t.lower()
if k not in seen: uniq.append(t); seen.add(k)
return uniq
def run_ocr_on_frames(frames: List[str], languages: str = "en", max_images: Optional[int] = None) -> List[str]:
langs_csv = languages or "en"
out = _ocr_with_easyocr(frames, langs_csv, max_images)
if out: return out
out = _ocr_with_tesseract(frames, langs_csv, max_images)
return out
# ---------- video processing ----------
def download_video(url: str, out_dir: str = "videos") -> str:
os.makedirs(out_dir, exist_ok=True)
out_tpl = os.path.join(out_dir, "%(title)s.%(ext)s")
subprocess.run(["yt-dlp","-o",out_tpl,url], check=True)
files = sorted(glob.glob(os.path.join(out_dir, "*")), key=os.path.getmtime)
return files[-1] if files else ""
def sample_frames_ffmpeg(video_path: str, out_dir: str = "frames", fps: float = 0.5) -> List[str]:
os.makedirs(out_dir, exist_ok=True)
try:
subprocess.run(["ffmpeg","-y","-i",video_path,"-vf",f"fps={fps}", os.path.join(out_dir, "frame_%06d.jpg")],
stdout=subprocess.PIPE, stderr=subprocess.PIPE, check=True)
except Exception:
return []
return sorted(glob.glob(os.path.join(out_dir, "frame_*.jpg")))
def aggregate_text(asr_text: str, ocr_lines: List[str]) -> str:
parts = []
if asr_text: parts.append(asr_text)
if ocr_lines: parts.append("\n".join(ocr_lines))
agg = normalize_ws("\n".join(parts))
uniq_lines, seen = [], set()
for line in agg.split("\n"):
k = line.strip().lower()
if k and k not in seen: uniq_lines.append(line.strip()); seen.add(k)
return "\n".join(uniq_lines)
def suggest_claims(text: str, top_k: int = 10) -> List[str]:
sents = [re.sub(r'^[\'"ββ]+|[\'"ββ]+$', '', x).strip() for x in re.split(r'[.!?\n]+', text or "") if x.strip()]
candidates = [s for s in sents if len(s) >= 12 and re.search(r"\b(is|are|was|were|has|have|had|will|can|does|did|cause|causes|leads|led|prove|proves|confirm|confirms|predict|predicts|announce|announces|claim|claims|say|says|warn|warns|plan|plans|declare|declares|ban|bans|approve|approves)\b", s, re.I)]
if not candidates:
fallback = [s for s in sents if 8 <= len(s) <= 140]
scored = []
for s in fallback:
score = (1 if re.search(r'\d', s) else 0) + sum(1 for w in s.split()[:6] if w[:1].isupper())
scored.append((score, s))
candidates = [s for _, s in sorted(scored, key=lambda x: -x[0])[:top_k]]
return candidates[:top_k]
def process_video(video_file: Optional[str] = None, video_url: Optional[str] = None,
whisper_model: str = "base", asr_language: Optional[str] = None,
ocr_langs: str = "en", fps: float = 0.5, max_ocr_images: int = 200) -> Dict:
workdir = f"session_{uuid.uuid4().hex[:8]}"; os.makedirs(workdir, exist_ok=True)
# pick source
if video_url and video_url.strip():
vp = download_video(video_url.strip(), out_dir=workdir)
elif video_file and os.path.exists(video_file):
vp = shutil.copy(video_file, os.path.join(workdir, os.path.basename(video_file)))
else:
raise ValueError("Provide either a local video file path or a URL.")
# audio
wav = os.path.join(workdir, "audio_16k.wav")
if not ffmpeg_available():
raise RuntimeError("ffmpeg binary not found. Ensure apt.txt includes 'ffmpeg'.")
extract_audio_ffmpeg(vp, wav, sr=16000)
# ASR (never hard-fail)
asr_text = ""
try:
asr_text = run_whisper_asr(wav, model_size=whisper_model, language=asr_language)
if not asr_text:
asr_text = "[ASR skipped: no backend available]"
except Exception as e:
asr_text = f"[ASR skipped: {e}]"
open(os.path.join(workdir, "transcript_asr.txt"), "w").write(asr_text)
# frames
frames_dir = os.path.join(workdir, "frames")
frames = sample_frames_ffmpeg(vp, out_dir=frames_dir, fps=fps)
# OCR (never hard-fail)
ocr_lines = []
try:
if frames:
ocr_lines = run_ocr_on_frames(frames, languages=ocr_langs, max_images=int(max_ocr_images))
else:
ocr_lines = []
except Exception as e:
ocr_lines = [f"[OCR error: {e}]"]
if not ocr_lines:
ocr_lines = ["[OCR skipped: no backend available]"]
open(os.path.join(workdir, "transcript_ocr.txt"), "w").write("\n".join(ocr_lines))
# aggregate + suggestions
agg = aggregate_text(asr_text, ocr_lines)
open(os.path.join(workdir, "transcript_aggregated.txt"), "w").write(agg)
suggestions = suggest_claims(agg, top_k=10)
return {"workdir": workdir, "video_path": vp, "asr_text": asr_text, "ocr_lines": ocr_lines,
"aggregated_text": agg, "suggested_claims": suggestions}
# ---------- Gradio UI ----------
THEME_CSS = """
<style>
body, .gradio-container {
background: radial-gradient(1200px 600px at 20% -10%, rgba(122,60,255,0.20), transparent 50%),
radial-gradient(1000px 400px at 80% 10%, rgba(0,179,255,0.14), transparent 50%),
linear-gradient(180deg, #0f1020, #0a0a12) !important;
color: #fff;
}
.glass { background: rgba(255,255,255,0.06); backdrop-filter: blur(8px);
border: 1px solid rgba(255,255,255,0.08); border-radius: 18px !important; }
.neon-btn { background: linear-gradient(90deg, rgba(122,60,255,0.9), rgba(0,179,255,0.9));
border-radius: 12px; color: white; box-shadow: 0 0 24px rgba(122,60,255,0.35); }
.neon-title { background: linear-gradient(90deg, #b28cff, #7a3cff, #00b3ff);
-webkit-background-clip: text; -webkit-text-fill-color: transparent; font-weight: 900; }
</style>
"""
def ui_run_factcheck(claims_text: str, use_web: bool, use_wiki: bool, allowlist_str: str):
claims = [c.strip() for c in (claims_text or "").splitlines() if c.strip()]
if not claims: return "Please enter one claim per line.", None
allow = [d.strip() for d in (allowlist_str or ", ".join(DEFAULT_ALLOWLIST)).split(",") if d.strip()]
res = run_on_claims(claims, use_web=use_web, use_wiki=use_wiki, allowlist=allow, k=8)
rows, cards = [], []
for v in res:
lines = ["β"*74, f"CLAIM: {v['claim']}", f"t_claim: {v['t_claim']}",
f"verdict@T: {v['label_at_t']} | verdict@Now: {v['label_now']} | confidence: {v['confidence']:.2f}",
f"rationale: {v.get('rationale','')}"]
evs = v.get("evidence_top_now", []) or []
if not evs: lines.append("EVIDENCE: (none retrieved)")
else:
lines.append("EVIDENCE (top):")
for e in evs[:6]:
snippet = (e.get("text","") or "").replace("\n"," ")
snippet = (snippet[:220] + "...") if len(snippet) > 220 else snippet
title = e.get("title","") or e.get("source","")
lines.append(f" β’ [{title}] {e.get('url','')}")
lines.append(f" {snippet}")
cards.append("\n".join(lines))
rows.append({"claim": v["claim"], "verdict_at_t": v["label_at_t"], "verdict_now": v["label_now"],
"confidence": round(float(v["confidence"]), 3),
"used_ids": "|".join(v.get("used_evidence_ids_now", []))})
df = pd.DataFrame(rows)
return "\n\n".join(cards), df
def ui_ingest_and_suggest(video_file, video_url, whisper_model, asr_language, ocr_langs, fps, max_ocr_images):
try: vp = video_file.name if video_file else None
except Exception: vp = None
out = process_video(video_file=vp, video_url=video_url,
whisper_model=whisper_model, asr_language=asr_language or None,
ocr_langs=ocr_langs, fps=float(fps), max_ocr_images=int(max_ocr_images))
asr_preview = (out["asr_text"][:1200] + "...") if len(out["asr_text"]) > 1200 else out["asr_text"]
ocr_preview = "\n".join(out["ocr_lines"][:50])
agg_preview = (out["aggregated_text"][:2000] + "...") if len(out["aggregated_text"]) > 2000 else out["aggregated_text"]
sugg = "\n".join(out["suggested_claims"])
return asr_preview, ocr_preview, agg_preview, sugg, sugg
def run_diagnostics():
lines = []
lines.append(f"FFmpeg: {'found' if ffmpeg_available() else 'NOT found'}")
lines.append(f"GPU: {'available' if gpu_available() else 'CPU only'}")
lines.append(f"ASR backends: {', '.join(asr_backends()) or 'none'}")
lines.append(f"OCR backends: {', '.join(ocr_backends()) or 'none'}")
# ffmpeg version
try:
v = subprocess.run(['ffmpeg','-version'], stdout=subprocess.PIPE, stderr=subprocess.PIPE, text=True, timeout=5)
lines.append(v.stdout.splitlines()[0])
except Exception as e:
lines.append(f"ffmpeg version: {e}")
# tesseract version
try:
if shutil.which("tesseract"):
tv = subprocess.run(['tesseract','-v'], stdout=subprocess.PIPE, stderr=subprocess.PIPE, text=True, timeout=5)
lines.append("Tesseract: " + tv.stdout.splitlines()[0])
else:
lines.append("Tesseract: NOT found on PATH")
except Exception as e:
lines.append(f"Tesseract: {e}")
# EasyOCR smoke (import only)
lines.append(f"EasyOCR import: {'ok' if _easyocr else 'fail'}; OpenCV: {'ok' if cv2 is not None else 'fail'}")
# Create a quick OCR synthetic test with Tesseract if available
try:
from PIL import Image, ImageDraw
img = Image.new("RGB", (480, 120), (255,255,255))
d = ImageDraw.Draw(img); d.text((10,40), "AEGIS TEST 123", fill=(0,0,0))
tmp = f"diag_{uuid.uuid4().hex[:6]}.png"; img.save(tmp)
o = run_ocr_on_frames([tmp], languages="en", max_images=1)
os.remove(tmp)
lines.append("OCR synthetic test: " + ("OK: " + " | ".join(o) if o else "no text read"))
except Exception as e:
lines.append(f"OCR synthetic test error: {e}")
return "\n".join(lines)
with gr.Blocks(css=THEME_CSS, fill_height=True) as demo:
gr.HTML("<h1 class='neon-title' style='font-size:42px;margin:8px 0;'>Claim Checker</h1><p style='opacity:.75;margin:-6px 0 18px;'>Make every claim earn its proof.</p>")
with gr.Tab("Manual Claims"):
with gr.Row():
with gr.Column(scale=1):
claims_box = gr.Textbox(label="Claims (one per line)", lines=8, placeholder="e.g. 5G towers caused COVID-19", elem_classes=["glass"])
with gr.Row():
use_web = gr.Checkbox(value=True, label="Use Web retrieval")
use_wiki = gr.Checkbox(value=True, label="Use Wikipedia")
#allowlist_box = gr.Textbox(label="Domain allowlist (comma-separated)", value=DEFAULT_ALLOWLIST, lines=2)
run_btn = gr.Button("Run Fact-Check")
with gr.Column(scale=1):
out_text = gr.Textbox(label="Verdicts + Sources", lines=18, interactive=False, elem_classes=["glass"])
out_df = gr.Dataframe(label="Structured Results", interactive=False)
run_btn.click(ui_run_factcheck,
inputs=[claims_box, use_web, use_wiki],
outputs=[out_text, out_df])
with gr.Tab("Video Ingest (ASR + OCR)"):
gr.Markdown("Upload a video **OR** provide a URL. Whisper + EasyOCR/Tesseract run; text is aggregated and claims suggested.")
with gr.Row():
with gr.Column(scale=1):
video_upload = gr.File(label="Upload video (mp4/mov/mkv...)", file_types=["video"])
video_url = gr.Textbox(label="Or paste video URL (YouTube/direct link)")
with gr.Row():
whisper_model = gr.Dropdown(choices=["tiny","base","small","medium"], value="base", label="Whisper model")
asr_language = gr.Textbox(label="ASR language hint (optional, e.g., en, ar)")
with gr.Row():
ocr_langs = gr.Textbox(value="en", label="OCR languages (comma-separated, e.g., en,ar)")
fps = gr.Slider(minimum=0.2, maximum=2.0, value=0.5, step=0.1, label="OCR frame sampling FPS")
max_ocr_images = gr.Slider(minimum=20, maximum=600, value=200, step=10, label="Max frames for OCR")
run_ingest = gr.Button("Ingest Video (ASR + OCR)", elem_classes=["neon-btn"])
with gr.Column(scale=1):
asr_out = gr.Textbox(label="ASR Transcript (preview)", lines=10, elem_classes=["glass"])
ocr_out = gr.Textbox(label="OCR Lines (preview)", lines=10, elem_classes=["glass"])
agg_out = gr.Textbox(label="Aggregated Text (preview)", lines=12, elem_classes=["glass"])
sugg_out = gr.Textbox(label="Suggested Claims", lines=10, elem_classes=["glass"])
to_manual = gr.Textbox(label="Copy to Manual Claims", lines=8, elem_classes=["glass"])
run_ingest.click(ui_ingest_and_suggest,
inputs=[video_upload, video_url, whisper_model, asr_language, ocr_langs, fps, max_ocr_images],
outputs=[asr_out, ocr_out, agg_out, sugg_out, to_manual])
demo.launch()
|