Spaces:
Sleeping
Sleeping
"""Estimate head pose according to the facial landmarks""" | |
import cv2 | |
import numpy as np | |
class PoseEstimator: | |
"""Estimate head pose according to the facial landmarks""" | |
def __init__(self, image_width, image_height): | |
"""Init a pose estimator. | |
Args: | |
image_width (int): input image width | |
image_height (int): input image height | |
""" | |
self.size = (image_height, image_width) | |
self.model_points_68 = self._get_full_model_points() | |
# Camera internals | |
self.focal_length = self.size[1] | |
self.camera_center = (self.size[1] / 2, self.size[0] / 2) | |
self.camera_matrix = np.array( | |
[[self.focal_length, 0, self.camera_center[0]], | |
[0, self.focal_length, self.camera_center[1]], | |
[0, 0, 1]], dtype="double") | |
# Assuming no lens distortion | |
self.dist_coeefs = np.zeros((4, 1)) | |
# Rotation vector and translation vector | |
self.r_vec = np.array([[0.01891013], [0.08560084], [-3.14392813]]) | |
self.t_vec = np.array( | |
[[-14.97821226], [-10.62040383], [-2053.03596872]]) | |
def _get_full_model_points(self, filename='assets/model.txt'): | |
"""Get all 68 3D model points from file""" | |
raw_value = [] | |
with open(filename) as file: | |
for line in file: | |
raw_value.append(line) | |
model_points = np.array(raw_value, dtype=np.float32) | |
model_points = np.reshape(model_points, (3, -1)).T | |
# Transform the model into a front view. | |
model_points[:, 2] *= -1 | |
return model_points | |
def solve(self, points): | |
"""Solve pose with all the 68 image points | |
Args: | |
points (np.ndarray): points on image. | |
Returns: | |
Tuple: (rotation_vector, translation_vector) as pose. | |
""" | |
if self.r_vec is None: | |
(_, rotation_vector, translation_vector) = cv2.solvePnP( | |
self.model_points_68, points, self.camera_matrix, self.dist_coeefs) | |
self.r_vec = rotation_vector | |
self.t_vec = translation_vector | |
(_, rotation_vector, translation_vector) = cv2.solvePnP( | |
self.model_points_68, | |
points, | |
self.camera_matrix, | |
self.dist_coeefs, | |
rvec=self.r_vec, | |
tvec=self.t_vec, | |
useExtrinsicGuess=True) | |
return (rotation_vector, translation_vector) | |
def visualize(self, image, pose, color=(255, 255, 255), line_width=2): | |
"""Draw a 3D box as annotation of pose""" | |
rotation_vector, translation_vector = pose | |
point_3d = [] | |
rear_size = 75 | |
rear_depth = 0 | |
point_3d.append((-rear_size, -rear_size, rear_depth)) | |
point_3d.append((-rear_size, rear_size, rear_depth)) | |
point_3d.append((rear_size, rear_size, rear_depth)) | |
point_3d.append((rear_size, -rear_size, rear_depth)) | |
point_3d.append((-rear_size, -rear_size, rear_depth)) | |
front_size = 100 | |
front_depth = 100 | |
point_3d.append((-front_size, -front_size, front_depth)) | |
point_3d.append((-front_size, front_size, front_depth)) | |
point_3d.append((front_size, front_size, front_depth)) | |
point_3d.append((front_size, -front_size, front_depth)) | |
point_3d.append((-front_size, -front_size, front_depth)) | |
point_3d = np.array(point_3d, dtype=np.float32).reshape(-1, 3) | |
# Map to 2d image points | |
(point_2d, _) = cv2.projectPoints(point_3d, | |
rotation_vector, | |
translation_vector, | |
self.camera_matrix, | |
self.dist_coeefs) | |
point_2d = np.int32(point_2d.reshape(-1, 2)) | |
# Draw all the lines | |
cv2.polylines(image, [point_2d], True, color, line_width, cv2.LINE_AA) | |
cv2.line(image, tuple(point_2d[1]), tuple( | |
point_2d[6]), color, line_width, cv2.LINE_AA) | |
cv2.line(image, tuple(point_2d[2]), tuple( | |
point_2d[7]), color, line_width, cv2.LINE_AA) | |
cv2.line(image, tuple(point_2d[3]), tuple( | |
point_2d[8]), color, line_width, cv2.LINE_AA) | |
def draw_axes(self, img, pose): | |
R, t = pose | |
img = cv2.drawFrameAxes(img, self.camera_matrix, | |
self.dist_coeefs, R, t, 30) | |
def show_3d_model(self): | |
from matplotlib import pyplot | |
from mpl_toolkits.mplot3d import Axes3D | |
fig = pyplot.figure() | |
ax = Axes3D(fig) | |
x = self.model_points_68[:, 0] | |
y = self.model_points_68[:, 1] | |
z = self.model_points_68[:, 2] | |
ax.scatter(x, y, z) | |
ax.axis('square') | |
pyplot.xlabel('x') | |
pyplot.ylabel('y') | |
pyplot.show() | |
### | |
# yhm : from chat gpt to detect distraction | |
### | |
def rotation_matrix_to_angles(self, rotation_vector): | |
"""Convert rotation vector to pitch, yaw, and roll angles.""" | |
rotation_matrix, _ = cv2.Rodrigues(rotation_vector) | |
sy = np.sqrt(rotation_matrix[0, 0]**2 + rotation_matrix[1, 0]**2) | |
singular = sy < 1e-6 | |
if not singular: | |
pitch = np.arctan2(rotation_matrix[2, 1], rotation_matrix[2, 2]) | |
yaw = np.arctan2(-rotation_matrix[2, 0], sy) | |
roll = np.arctan2(rotation_matrix[1, 0], rotation_matrix[0, 0]) | |
else: | |
pitch = np.arctan2(-rotation_matrix[1, 2], rotation_matrix[1, 1]) | |
yaw = np.arctan2(-rotation_matrix[2, 0], sy) | |
roll = 0 | |
return np.degrees(pitch), np.degrees(yaw), np.degrees(roll) | |
def is_distracted(self, rotation_vector): | |
"""Determine if the user is distracted based on head pose angles.""" | |
pitch, yaw, roll = self.rotation_matrix_to_angles(rotation_vector) | |
# Define thresholds (adjust based on further testing) | |
pitch_threshold = (-20, 40) # Allow some variability in pitch | |
yaw_threshold = (-35, 30) # Reasonable range for yaw | |
roll_threshold = (-180, 180) # Centered around -180 degree roll | |
# print("pitch, yaw, roll", pitch, yaw, roll) | |
# Check if head is roughly considered 'facing forward' | |
focus_pitch = pitch_threshold[0] < pitch < pitch_threshold[1] | |
focus_yaw = yaw_threshold[0] < yaw < yaw_threshold[1] | |
focus_roll = roll_threshold[0] < roll < roll_threshold[1] | |
return not (focus_pitch and focus_yaw and focus_roll) | |
# """Determine if the user is distracted based on head pose angles.""" | |
# pitch, yaw, roll = self.rotation_matrix_to_angles(rotation_vector) | |
# print("pitch, yaw, roll", pitch, yaw, roll) | |
# # Define thresholds (you may need to adjust these based on testing) | |
# pitch_threshold = 15 # Up/Down threshold | |
# yaw_threshold = 20 # Left/Right threshold | |
# roll_threshold = 10 # Tilt threshold | |
# # Check if head is facing roughly forward | |
# if abs(pitch) < pitch_threshold and abs(yaw) < yaw_threshold and abs(roll) < roll_threshold: | |
# return False # Focused | |
# else: | |
# return True # Distracted | |
def detect_distraction(self, points): | |
"""Solve pose and detect distraction status based on pose.""" | |
rotation_vector, translation_vector = self.solve(points) | |
distraction_status = self.is_distracted(rotation_vector) | |
return distraction_status, (rotation_vector, translation_vector) | |
# second part | |
# def rotation_matrix_to_angles(self, rotation_vector): | |
# """Convert rotation vector to pitch, yaw, and roll angles.""" | |
# # Convert the rotation vector into a rotation matrix | |
# rotation_matrix, _ = cv2.Rodrigues(rotation_vector) | |
# # Ensure no division by zero | |
# sy = np.sqrt(rotation_matrix[0, 0]**2 + rotation_matrix[1, 0]**2) | |
# singular = sy < 1e-6 | |
# if not singular: | |
# pitch = np.arctan2(rotation_matrix[2, 1], rotation_matrix[2, 2]) | |
# yaw = np.arctan2(-rotation_matrix[2, 0], sy) | |
# roll = np.arctan2(rotation_matrix[1, 0], rotation_matrix[0, 0]) | |
# else: | |
# pitch = np.arctan2(-rotation_matrix[1, 2], rotation_matrix[1, 1]) | |
# yaw = np.arctan2(-rotation_matrix[2, 0], sy) | |
# roll = 0 | |
# # Return converted angles in degrees | |
# return np.degrees(pitch), np.degrees(yaw), np.degrees(roll) | |
# def is_distracted(self, rotation_vector): | |
# """Determine if the user is distracted based on head pose angles.""" | |
# pitch, yaw, roll = self.rotation_matrix_to_angles(rotation_vector) | |
# # Test different thresholds based on specific requirements | |
# pitch_threshold = 15 # Up/Down | |
# yaw_threshold = 20 # Left/Right | |
# roll_threshold = 10 # Tilt | |
# # Determine distraction status | |
# return not (abs(pitch) < pitch_threshold and abs(yaw) < yaw_threshold and abs(roll) < roll_threshold) | |
# def detect_distraction(self, points): | |
# """Solve pose and detect distraction status based on pose.""" | |
# rotation_vector, translation_vector = self.solve(points) | |
# distraction_status = self.is_distracted(rotation_vector) | |
# return distraction_status, (rotation_vector, translation_vector) |