Afnan214's picture
distraction detection
e897273 unverified
"""Demo code showing how to estimate human head pose.
There are three major steps:
1. Detect and crop the human faces in the video frame.
2. Run facial landmark detection on the face image.
3. Estimate the pose by solving a PnP problem.
For more details, please refer to:
https://github.com/yinguobing/head-pose-estimation
"""
from argparse import ArgumentParser
import cv2
from face_detection import FaceDetector
from mark_detection import MarkDetector
from pose_estimation import PoseEstimator
from utils import refine
# Parse arguments from user input.
parser = ArgumentParser()
parser.add_argument("--video", type=str, default=None,
help="Video file to be processed.")
parser.add_argument("--cam", type=int, default=0,
help="The webcam index.")
args = parser.parse_args()
print(__doc__)
print("OpenCV version: {}".format(cv2.__version__))
def run():
# Before estimation started, there are some startup works to do.
# Initialize the video source from webcam or video file.
video_src = args.cam if args.video is None else args.video
cap = cv2.VideoCapture(video_src)
print(f"Video source: {video_src}")
# Get the frame size. This will be used by the following detectors.
frame_width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
frame_height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
# Setup a face detector to detect human faces.
face_detector = FaceDetector("assets/face_detector.onnx")
# Setup a mark detector to detect landmarks.
mark_detector = MarkDetector("assets/face_landmarks.onnx")
# Setup a pose estimator to solve pose.
pose_estimator = PoseEstimator(frame_width, frame_height)
# Measure the performance with a tick meter.
tm = cv2.TickMeter()
# Now, let the frames flow.
while True:
# Read a frame.
frame_got, frame = cap.read()
if frame_got is False:
break
# If the frame comes from webcam, flip it so it looks like a mirror.
if video_src == 0:
frame = cv2.flip(frame, 2)
# Step 1: Get faces from current frame.
faces, _ = face_detector.detect(frame, 0.7)
# Any valid face found?
if len(faces) > 0:
tm.start()
# Step 2: Detect landmarks. Crop and feed the face area into the
# mark detector. Note only the first face will be used for
# demonstration.
face = refine(faces, frame_width, frame_height, 0.15)[0]
x1, y1, x2, y2 = face[:4].astype(int)
patch = frame[y1:y2, x1:x2]
# Run the mark detection.
marks = mark_detector.detect([patch])[0].reshape([68, 2])
# Convert the locations from local face area to the global image.
marks *= (x2 - x1)
marks[:, 0] += x1
marks[:, 1] += y1
# Step 3: Try pose estimation with 68 points.
pose = pose_estimator.solve(marks)
# yhm:Try to get number from the pose
# print(pose)
tm.stop()
# All done. The best way to show the result would be drawing the
# pose on the frame in realtime.
# Do you want to see the pose annotation?
pose_estimator.visualize(frame, pose, color=(0, 255, 0))
# Do you want to see the axes?
pose_estimator.draw_axes(frame, pose)
# Do you want to see the marks?
# mark_detector.visualize(frame, marks, color=(0, 255, 0))
# Do you want to see the face bounding boxes?
# face_detector.visualize(frame, faces)
# Draw the FPS on screen.
cv2.rectangle(frame, (0, 0), (90, 30), (0, 0, 0), cv2.FILLED)
cv2.putText(frame, f"FPS: {tm.getFPS():.0f}", (10, 20),
cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 255, 255))
# Show preview.
cv2.imshow("Preview", frame)
if cv2.waitKey(1) == 27:
break
if __name__ == '__main__':
run()