AdithyaSNair commited on
Commit
d6cb779
·
1 Parent(s): 24e4927

Main commit

Browse files
Files changed (10) hide show
  1. Mild.jpg +0 -0
  2. Mild1.jpg +0 -0
  3. Moderate.jpg +0 -0
  4. Moderate1.jpg +0 -0
  5. Non (1).jpg +0 -0
  6. Non (2).jpg +0 -0
  7. Very (1).jpg +0 -0
  8. Very (2).jpg +0 -0
  9. app.py +57 -0
  10. requirements.txt +7 -0
Mild.jpg ADDED
Mild1.jpg ADDED
Moderate.jpg ADDED
Moderate1.jpg ADDED
Non (1).jpg ADDED
Non (2).jpg ADDED
Very (1).jpg ADDED
Very (2).jpg ADDED
app.py ADDED
@@ -0,0 +1,57 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import os
3
+ import keras
4
+ import pandas as pd
5
+ import seaborn as sns
6
+ import matplotlib.pyplot as plt
7
+ from keras.models import Sequential
8
+ from PIL import Image
9
+ from keras.layers import Conv2D, Flatten, Dense, Dropout, BatchNormalization, MaxPooling2D
10
+ from sklearn.preprocessing import OneHotEncoder
11
+ import pickle
12
+ import gradio as gr
13
+
14
+ def load_model():
15
+ save_path = 'model.pkl'
16
+ with open(save_path, 'rb') as file:
17
+ model = pickle.load(file)
18
+ return model
19
+
20
+ def predict_dementia(images, model):
21
+ predictions = []
22
+ for image in images:
23
+ img = Image.fromarray(image.astype('uint8'))
24
+ img = img.resize((128, 128))
25
+ img = np.array(img)
26
+ img = img.reshape(1, 128, 128, 3)
27
+
28
+ prediction = model.predict(img)
29
+ prediction_class = np.argmax(prediction)
30
+ predictions.append(names(prediction_class))
31
+ return predictions
32
+
33
+ def names(number):
34
+ if number == 0:
35
+ return 'Non Demented'
36
+ elif number == 1:
37
+ return 'Mild Dementia'
38
+ elif number == 2:
39
+ return 'Moderate Dementia'
40
+ elif number == 3:
41
+ return 'Very Mild Dementia'
42
+ else:
43
+ return 'Error in Prediction'
44
+
45
+ def main(images):
46
+ model = load_model()
47
+ predictions = predict_dementia(images, model)
48
+ return predictions
49
+
50
+ iface = gr.Interface(fn=main,
51
+ inputs="image",
52
+ outputs="text",
53
+ title="Dementia Classification",
54
+ description="Classify dementia based on brain images",
55
+ examples=[["Non(1).jpg"],["Moderate.jpg"],["Mild.jpg"]])
56
+
57
+ iface.launch(debug =True)
requirements.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ gradio
2
+ tensorflow
3
+ numpy
4
+ pandas
5
+ matplotlib
6
+ scikit-learn
7
+ seaborn