Spaces:
Runtime error
Runtime error
import gradio as gr | |
from loadimg import load_img | |
import spaces | |
from transformers import AutoModelForImageSegmentation | |
import torch | |
from torchvision import transforms | |
import moviepy.editor as mp | |
from pydub import AudioSegment | |
from PIL import Image | |
import numpy as np | |
import os | |
import tempfile | |
import uuid | |
import time | |
from concurrent.futures import ThreadPoolExecutor | |
from PIL import Image, ImageSequence | |
import base64 | |
import io | |
import numpy as np | |
import tempfile | |
from gradio_imageslider import ImageSlider | |
torch.set_float32_matmul_precision(["high", "highest"][0]) | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
# Maximum image size | |
Image.MAX_IMAGE_PIXELS = None | |
# Load both BiRefNet models | |
birefnet = AutoModelForImageSegmentation.from_pretrained( | |
"ZhengPeng7/BiRefNet", trust_remote_code=True | |
) | |
birefnet.to(device) | |
birefnet_lite = AutoModelForImageSegmentation.from_pretrained( | |
"ZhengPeng7/BiRefNet_lite", trust_remote_code=True | |
) | |
birefnet_lite.to(device) | |
transform_image = transforms.Compose( | |
[ | |
transforms.Resize((1024, 1024)), | |
transforms.ToTensor(), | |
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]), | |
] | |
) | |
# Video processing | |
# Function to process a single frame | |
def process_frame( | |
frame, bg_type, bg, fast_mode, bg_frame_index, background_frames, color | |
): | |
try: | |
pil_image = Image.fromarray(frame) | |
if bg_type == "Color": | |
processed_image = process(pil_image, color, fast_mode) | |
elif bg_type == "Image": | |
processed_image = process(pil_image, bg, fast_mode) | |
elif bg_type == "Video": | |
background_frame = background_frames[ | |
bg_frame_index | |
] # Access the correct background frame | |
bg_frame_index += 1 | |
background_image = Image.fromarray(background_frame) | |
processed_image = process(pil_image, background_image, fast_mode) | |
else: | |
processed_image = ( | |
pil_image # Default to original image if no background is selected | |
) | |
return np.array(processed_image), bg_frame_index | |
except Exception as e: | |
print(f"Error processing frame: {e}") | |
return frame, bg_frame_index | |
def remove_bg_video( | |
vid, | |
bg_type="Color", | |
bg_image=None, | |
bg_video=None, | |
color="#00000000", | |
fps=0, | |
video_handling="slow_down", | |
fast_mode=True, | |
max_workers=6, | |
): | |
try: | |
start_time = time.time() # Start the timer | |
video = mp.VideoFileClip(vid) | |
if fps == 0: | |
fps = video.fps | |
audio = video.audio | |
frames = list(video.iter_frames(fps=fps)) | |
processed_frames = [] | |
yield gr.update(visible=True), gr.update( | |
visible=False | |
), f"Processing started... Elapsed time: 0 seconds" | |
if bg_type == "Video": | |
background_video = mp.VideoFileClip(bg_video) | |
if background_video.duration < video.duration: | |
if video_handling == "slow_down": | |
background_video = background_video.fx( | |
mp.vfx.speedx, factor=video.duration / background_video.duration | |
) | |
else: # video_handling == "loop" | |
background_video = mp.concatenate_videoclips( | |
[background_video] | |
* int(video.duration / background_video.duration + 1) | |
) | |
background_frames = list(background_video.iter_frames(fps=fps)) | |
else: | |
background_frames = None | |
bg_frame_index = 0 # Initialize background frame index | |
with ThreadPoolExecutor(max_workers=max_workers) as executor: | |
# Pass bg_frame_index as part of the function arguments | |
futures = [ | |
executor.submit( | |
process_frame, | |
frames[i], | |
bg_type, | |
bg_image, | |
fast_mode, | |
bg_frame_index + i, | |
background_frames, | |
color, | |
) | |
for i in range(len(frames)) | |
] | |
for i, future in enumerate(futures): | |
result, _ = future.result() # No need to update bg_frame_index here | |
processed_frames.append(result) | |
elapsed_time = time.time() - start_time | |
yield result, None, f"Processing frame {i+1}/{len(frames)}... Elapsed time: {elapsed_time:.2f} seconds" | |
processed_video = mp.ImageSequenceClip(processed_frames, fps=fps) | |
processed_video = processed_video.set_audio(audio) | |
with tempfile.NamedTemporaryFile(suffix=".mp4", delete=False) as temp_file: | |
temp_filepath = temp_file.name | |
processed_video.write_videofile(temp_filepath, codec="libx264") | |
elapsed_time = time.time() - start_time | |
yield gr.update(visible=False), gr.update( | |
visible=True | |
), f"Processing complete! Elapsed time: {elapsed_time:.2f} seconds" | |
yield processed_frames[ | |
-1 | |
], temp_filepath, f"Processing complete! Elapsed time: {elapsed_time:.2f} seconds" | |
except Exception as e: | |
print(f"Error: {e}") | |
elapsed_time = time.time() - start_time | |
yield gr.update(visible=False), gr.update( | |
visible=True | |
), f"Error processing video: {e}. Elapsed time: {elapsed_time:.2f} seconds" | |
yield None, f"Error processing video: {e}", f"Error processing video: {e}. Elapsed time: {elapsed_time:.2f} seconds" | |
def process(image, bg, fast_mode=False): | |
image_size = image.size | |
input_images = transform_image(image).unsqueeze(0).to(device) | |
model = birefnet_lite if fast_mode else birefnet | |
with torch.no_grad(): | |
preds = model(input_images)[-1].sigmoid().cpu() | |
pred = preds[0].squeeze() | |
pred_pil = transforms.ToPILImage()(pred) | |
mask = pred_pil.resize(image_size) | |
if isinstance(bg, str) and bg.startswith("#"): | |
color_rgb = tuple(int(bg[i : i + 2], 16) for i in (1, 3, 5)) | |
background = Image.new("RGBA", image_size, color_rgb + (255,)) | |
elif isinstance(bg, Image.Image): | |
background = bg.convert("RGBA").resize(image_size) | |
else: | |
background = Image.open(bg).convert("RGBA").resize(image_size) | |
image = Image.composite(image, background, mask) | |
return image | |
# Image processing | |
# Function to remove background from an image | |
def remove_bg_fn(image): | |
im = load_img(image, output_type="pil") | |
im = im.convert("RGB") | |
origin = im.copy() | |
with tempfile.NamedTemporaryFile(suffix=".png", delete=False) as temp_file: | |
origin_filepath = temp_file.name | |
origin.save(origin_filepath, format="PNG") | |
if im.format == "GIF": | |
frames = [] | |
for frame in ImageSequence.Iterator(im): | |
frame = frame.convert("RGBA") | |
processed_frame = process_image(frame) | |
frames.append(processed_frame) | |
processed_image = frames[0] | |
with tempfile.NamedTemporaryFile(suffix=".gif", delete=False) as temp_file: | |
temp_filepath = temp_file.name | |
processed_image.save( | |
temp_filepath, | |
format="GIF", | |
save_all=True, | |
append_images=frames[1:], | |
loop=0, | |
) | |
else: | |
processed_image = process_image(im) | |
with tempfile.NamedTemporaryFile(suffix=".png", delete=False) as temp_file: | |
temp_filepath = temp_file.name | |
processed_image.save(temp_filepath, format="PNG") | |
return (temp_filepath, origin_filepath) | |
def process_image(image): | |
image_size = image.size | |
input_images = transform_image(image).unsqueeze(0).to(device) | |
# Prediction | |
with torch.no_grad(): | |
preds = birefnet(input_images)[-1].sigmoid().cpu() | |
pred = preds[0].squeeze() | |
pred_pil = transforms.ToPILImage()(pred) | |
mask = pred_pil.resize(image_size) | |
image.putalpha(mask) | |
return image | |
# Function to apply background to an image | |
def apply_background(image, background): | |
if background.mode != "RGBA": | |
background = background.convert("RGBA") | |
image = image.convert("RGBA") | |
combined = Image.alpha_composite(background, image) | |
return combined | |
# Function to convert hex color to RGBA | |
def hex_to_rgba(hex_color): | |
hex_color = hex_color.lstrip("#") | |
lv = len(hex_color) | |
return tuple(int(hex_color[i : i + lv // 3], 16) for i in range(0, lv, lv // 3)) + ( | |
255, | |
) | |
def apply_bg_image(image, background_file=None, background_color=None, bg_type="Color"): | |
try: | |
input_image = load_img(image, output_type="pil") | |
origin = input_image.copy() | |
with tempfile.NamedTemporaryFile(suffix=".png", delete=False) as temp_file: | |
origin_filepath = temp_file.name | |
origin.save(origin_filepath, format="PNG") | |
color_profile = input_image.info.get("icc_profile") | |
if background_file is not None: | |
background_image = load_img(background_file, output_type="pil") | |
else: | |
background_image = None | |
if bg_type == "Color": | |
background_image = Image.new("RGBA", input_image.size, hex_to_rgba(background_color)) | |
elif bg_type == "Image" and background_image is not None: | |
if background_image.size != input_image.size: | |
background_image = background_image.resize(input_image.size) | |
if input_image.format == "GIF": | |
frames = [] | |
for frame in ImageSequence.Iterator(input_image): | |
frame = frame.convert("RGBA") | |
output_frame = apply_background(frame, background_image) | |
frames.append(output_frame) | |
output_image = frames[0] | |
with tempfile.NamedTemporaryFile(suffix=".gif", delete=False) as temp_file: | |
temp_filepath = temp_file.name | |
output_image.save( | |
temp_filepath, | |
format="GIF", | |
save_all=True, | |
append_images=frames[1:], | |
loop=0, | |
icc_profile=color_profile, | |
) | |
else: | |
output_image = apply_background(input_image, background_image) | |
with tempfile.NamedTemporaryFile(suffix=".png", delete=False) as temp_file: | |
temp_filepath = temp_file.name | |
output_image.save(temp_filepath, format="PNG", optimize=True, icc_profile=color_profile) | |
return (temp_filepath, origin_filepath) | |
except Exception as e: | |
return str(e) | |
# Gradio interface | |
with gr.Blocks(theme=gr.themes.Ocean()) as demo: | |
gr.Markdown("# Image and Video Background Remover & Changer\n\nRemove or apply background to images and videos.") | |
with gr.Tab("Remove Image Background"): | |
with gr.Row(): | |
image_input = gr.Image(label="Upload Image", interactive=True) | |
slider = ImageSlider(label="Processed Image", type="pil") | |
remove_button = gr.Button("Remove Image Background", interactive=True) | |
examples = gr.Examples( | |
[ | |
load_img( | |
"./examples/lion.jpg", | |
output_type="pil", | |
) | |
], | |
inputs=image_input, | |
outputs=slider, | |
fn=remove_bg_fn, | |
cache_examples=True, | |
cache_mode="eager", | |
) | |
remove_button.click(remove_bg_fn, inputs=image_input, outputs=slider) | |
with gr.Tab("Apply Background to Image"): | |
with gr.Row(): | |
image_input = gr.Image(label="Upload Image", interactive=True) | |
slider = ImageSlider(label="Processed Image", type="pil") | |
apply_button = gr.Button("Apply Background", interactive=True) | |
with gr.Row(): | |
bg_type = gr.Radio( | |
["Color", "Image"], | |
label="Background Type", | |
value="Color", | |
interactive=True, | |
) | |
color_picker = gr.ColorPicker( | |
label="Background Color", | |
value="#00FF00", | |
visible=True, | |
interactive=True, | |
) | |
bg_image = gr.Image( | |
label="Background Image", | |
type="filepath", | |
visible=False, | |
interactive=True, | |
) | |
def update_visibility(bg_type): | |
if bg_type == "Color": | |
return ( | |
gr.update(visible=True), | |
gr.update(visible=False), | |
) | |
elif bg_type == "Image": | |
return ( | |
gr.update(visible=False), | |
gr.update(visible=True), | |
) | |
else: | |
return ( | |
gr.update(visible=False), | |
gr.update(visible=False), | |
) | |
bg_type.change( | |
update_visibility, | |
inputs=bg_type, | |
outputs=[color_picker, bg_image], | |
) | |
examples = gr.Examples( | |
[ | |
["./examples/mario.png", None, "#0cfa38", "Color"], | |
["./examples/mario.png", "./examples/bg-image.jpg", None, "Image"], | |
], | |
inputs=[image_input, bg_image, color_picker, bg_type], | |
outputs=slider, | |
fn=apply_bg_image, | |
cache_examples=True, | |
cache_mode="eager", | |
) | |
apply_button.click( | |
apply_bg_image, | |
inputs=[image_input, bg_image, color_picker, bg_type], | |
outputs= slider, | |
) | |
with gr.Tab("Remove Video Background"): | |
with gr.Row(): | |
in_video = gr.Video(label="Input Video", interactive=True) | |
stream_image = gr.Image(label="Streaming Output", visible=False) | |
out_video = gr.Video(label="Final Output Video") | |
submit_button = gr.Button("Change Background", interactive=True) | |
with gr.Row(): | |
fps_slider = gr.Slider( | |
minimum=0, | |
maximum=60, | |
step=1, | |
value=0, | |
label="Output FPS (0 will inherit the original fps value)", | |
interactive=True, | |
) | |
bg_type = gr.Radio( | |
["Color", "Image", "Video"], | |
label="Background Type", | |
value="Color", | |
interactive=True, | |
) | |
color_picker = gr.ColorPicker( | |
label="Background Color", | |
value="#00FF00", | |
visible=True, | |
interactive=True, | |
) | |
bg_image = gr.Image( | |
label="Background Image", | |
type="filepath", | |
visible=False, | |
interactive=True, | |
) | |
bg_video = gr.Video( | |
label="Background Video", visible=False, interactive=True | |
) | |
with gr.Column(visible=False) as video_handling_options: | |
video_handling_radio = gr.Radio( | |
["slow_down", "loop"], | |
label="Video Handling", | |
value="slow_down", | |
interactive=True, | |
) | |
fast_mode_checkbox = gr.Checkbox( | |
label="Fast Mode (Use BiRefNet_lite)", value=True, interactive=True | |
) | |
max_workers_slider = gr.Slider( | |
minimum=1, | |
maximum=32, | |
step=1, | |
value=6, | |
label="Max Workers", | |
info="Determines how many frames to process in parallel", | |
interactive=True, | |
) | |
time_textbox = gr.Textbox(label="Time Elapsed", interactive=False) | |
def update_visibility(bg_type): | |
if bg_type == "Color": | |
return ( | |
gr.update(visible=True), | |
gr.update(visible=False), | |
gr.update(visible=False), | |
gr.update(visible=False), | |
) | |
elif bg_type == "Image": | |
return ( | |
gr.update(visible=False), | |
gr.update(visible=True), | |
gr.update(visible=False), | |
gr.update(visible=False), | |
) | |
elif bg_type == "Video": | |
return ( | |
gr.update(visible=False), | |
gr.update(visible=False), | |
gr.update(visible=True), | |
gr.update(visible=True), | |
) | |
else: | |
return ( | |
gr.update(visible=False), | |
gr.update(visible=False), | |
gr.update(visible=False), | |
gr.update(visible=False), | |
) | |
bg_type.change( | |
update_visibility, | |
inputs=bg_type, | |
outputs=[color_picker, bg_image, bg_video, video_handling_options], | |
) | |
examples = gr.Examples( | |
[ | |
[ | |
"./examples/videoplayback.mp4", | |
"Video", | |
None, | |
"./examples/mov_bbb.mp4", | |
], | |
[ | |
"./examples/videoplayback.mp4", | |
"Image", | |
"./examples/bg-image.jpg", | |
None, | |
], | |
["./examples/videoplayback.mp4", "Color", None, None], | |
], | |
inputs=[in_video, bg_type, bg_image, bg_video], | |
outputs=[stream_image, out_video, time_textbox], | |
fn=remove_bg_video, | |
cache_examples=True, | |
cache_mode="eager", | |
) | |
submit_button.click( | |
remove_bg_video, | |
inputs=[ | |
in_video, | |
bg_type, | |
bg_image, | |
bg_video, | |
color_picker, | |
fps_slider, | |
video_handling_radio, | |
fast_mode_checkbox, | |
max_workers_slider, | |
], | |
outputs=[stream_image, out_video, time_textbox], | |
) | |
if __name__ == "__main__": | |
demo.launch(show_error=True, ssr_mode=False) |