Spaces:
Running
Running
# Copyright (c) 2023, Tencent Inc | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# https://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import numpy as np | |
import torch | |
import torch.nn as nn | |
import nvdiffrast.torch as dr | |
from einops import rearrange, repeat | |
from .encoder.dino_wrapper import DinoWrapper | |
from .decoder.transformer import TriplaneTransformer | |
from .renderer.synthesizer_mesh import TriplaneSynthesizer | |
from .geometry.camera.perspective_camera import PerspectiveCamera | |
from .geometry.render.neural_render import NeuralRender | |
from .geometry.rep_3d.flexicubes_geometry import FlexiCubesGeometry | |
from ..utils.mesh_util import xatlas_uvmap | |
class InstantMesh(nn.Module): | |
""" | |
Full model of the large reconstruction model. | |
""" | |
def __init__( | |
self, | |
encoder_freeze: bool = False, | |
encoder_model_name: str = 'facebook/dino-vitb16', | |
encoder_feat_dim: int = 768, | |
transformer_dim: int = 1024, | |
transformer_layers: int = 16, | |
transformer_heads: int = 16, | |
triplane_low_res: int = 32, | |
triplane_high_res: int = 64, | |
triplane_dim: int = 80, | |
rendering_samples_per_ray: int = 128, | |
grid_res: int = 128, | |
grid_scale: float = 2.0, | |
): | |
super().__init__() | |
# attributes | |
self.grid_res = grid_res | |
self.grid_scale = grid_scale | |
self.deformation_multiplier = 4.0 | |
# modules | |
self.encoder = DinoWrapper( | |
model_name=encoder_model_name, | |
freeze=encoder_freeze, | |
) | |
self.transformer = TriplaneTransformer( | |
inner_dim=transformer_dim, | |
num_layers=transformer_layers, | |
num_heads=transformer_heads, | |
image_feat_dim=encoder_feat_dim, | |
triplane_low_res=triplane_low_res, | |
triplane_high_res=triplane_high_res, | |
triplane_dim=triplane_dim, | |
) | |
self.synthesizer = TriplaneSynthesizer( | |
triplane_dim=triplane_dim, | |
samples_per_ray=rendering_samples_per_ray, | |
) | |
def init_flexicubes_geometry(self, device, fovy=50.0, use_renderer=True): | |
camera = PerspectiveCamera(fovy=fovy, device=device) | |
if use_renderer: | |
renderer = NeuralRender(device, camera_model=camera) | |
else: | |
renderer = None | |
self.geometry = FlexiCubesGeometry( | |
grid_res=self.grid_res, | |
scale=self.grid_scale, | |
renderer=renderer, | |
render_type='neural_render', | |
device=device, | |
) | |
def forward_planes(self, images, cameras): | |
# images: [B, V, C_img, H_img, W_img] | |
# cameras: [B, V, 16] | |
B = images.shape[0] | |
# encode images | |
image_feats = self.encoder(images, cameras) | |
image_feats = rearrange(image_feats, '(b v) l d -> b (v l) d', b=B) | |
# decode triplanes | |
planes = self.transformer(image_feats) | |
return planes | |
def get_sdf_deformation_prediction(self, planes): | |
''' | |
Predict SDF and deformation for tetrahedron vertices | |
:param planes: triplane feature map for the geometry | |
''' | |
init_position = self.geometry.verts.unsqueeze(0).expand(planes.shape[0], -1, -1) | |
# Step 1: predict the SDF and deformation | |
sdf, deformation, weight = torch.utils.checkpoint.checkpoint( | |
self.synthesizer.get_geometry_prediction, | |
planes, | |
init_position, | |
self.geometry.indices, | |
use_reentrant=False, | |
) | |
# Step 2: Normalize the deformation to avoid the flipped triangles. | |
deformation = 1.0 / (self.grid_res * self.deformation_multiplier) * torch.tanh(deformation) | |
sdf_reg_loss = torch.zeros(sdf.shape[0], device=sdf.device, dtype=torch.float32) | |
#### | |
# Step 3: Fix some sdf if we observe empty shape (full positive or full negative) | |
sdf_bxnxnxn = sdf.reshape((sdf.shape[0], self.grid_res + 1, self.grid_res + 1, self.grid_res + 1)) | |
sdf_less_boundary = sdf_bxnxnxn[:, 1:-1, 1:-1, 1:-1].reshape(sdf.shape[0], -1) | |
pos_shape = torch.sum((sdf_less_boundary > 0).int(), dim=-1) | |
neg_shape = torch.sum((sdf_less_boundary < 0).int(), dim=-1) | |
zero_surface = torch.bitwise_or(pos_shape == 0, neg_shape == 0) | |
if torch.sum(zero_surface).item() > 0: | |
update_sdf = torch.zeros_like(sdf[0:1]) | |
max_sdf = sdf.max() | |
min_sdf = sdf.min() | |
update_sdf[:, self.geometry.center_indices] += (1.0 - min_sdf) # greater than zero | |
update_sdf[:, self.geometry.boundary_indices] += (-1 - max_sdf) # smaller than zero | |
new_sdf = torch.zeros_like(sdf) | |
for i_batch in range(zero_surface.shape[0]): | |
if zero_surface[i_batch]: | |
new_sdf[i_batch:i_batch + 1] += update_sdf | |
update_mask = (new_sdf == 0).float() | |
# Regulraization here is used to push the sdf to be a different sign (make it not fully positive or fully negative) | |
sdf_reg_loss = torch.abs(sdf).mean(dim=-1).mean(dim=-1) | |
sdf_reg_loss = sdf_reg_loss * zero_surface.float() | |
sdf = sdf * update_mask + new_sdf * (1 - update_mask) | |
# Step 4: Here we remove the gradient for the bad sdf (full positive or full negative) | |
final_sdf = [] | |
final_def = [] | |
for i_batch in range(zero_surface.shape[0]): | |
if zero_surface[i_batch]: | |
final_sdf.append(sdf[i_batch: i_batch + 1].detach()) | |
final_def.append(deformation[i_batch: i_batch + 1].detach()) | |
else: | |
final_sdf.append(sdf[i_batch: i_batch + 1]) | |
final_def.append(deformation[i_batch: i_batch + 1]) | |
sdf = torch.cat(final_sdf, dim=0) | |
deformation = torch.cat(final_def, dim=0) | |
return sdf, deformation, sdf_reg_loss, weight | |
def get_geometry_prediction(self, planes=None): | |
''' | |
Function to generate mesh with give triplanes | |
:param planes: triplane features | |
''' | |
# Step 1: first get the sdf and deformation value for each vertices in the tetrahedon grid. | |
sdf, deformation, sdf_reg_loss, weight = self.get_sdf_deformation_prediction(planes) | |
v_deformed = self.geometry.verts.unsqueeze(dim=0).expand(sdf.shape[0], -1, -1) + deformation | |
tets = self.geometry.indices | |
n_batch = planes.shape[0] | |
v_list = [] | |
f_list = [] | |
flexicubes_surface_reg_list = [] | |
# Step 2: Using marching tet to obtain the mesh | |
for i_batch in range(n_batch): | |
verts, faces, flexicubes_surface_reg = self.geometry.get_mesh( | |
v_deformed[i_batch], | |
sdf[i_batch].squeeze(dim=-1), | |
with_uv=False, | |
indices=tets, | |
weight_n=weight[i_batch].squeeze(dim=-1), | |
is_training=self.training, | |
) | |
flexicubes_surface_reg_list.append(flexicubes_surface_reg) | |
v_list.append(verts) | |
f_list.append(faces) | |
flexicubes_surface_reg = torch.cat(flexicubes_surface_reg_list).mean() | |
flexicubes_weight_reg = (weight ** 2).mean() | |
return v_list, f_list, sdf, deformation, v_deformed, (sdf_reg_loss, flexicubes_surface_reg, flexicubes_weight_reg) | |
def get_texture_prediction(self, planes, tex_pos, hard_mask=None): | |
''' | |
Predict Texture given triplanes | |
:param planes: the triplane feature map | |
:param tex_pos: Position we want to query the texture field | |
:param hard_mask: 2D silhoueete of the rendered image | |
''' | |
tex_pos = torch.cat(tex_pos, dim=0) | |
if not hard_mask is None: | |
tex_pos = tex_pos * hard_mask.float() | |
batch_size = tex_pos.shape[0] | |
tex_pos = tex_pos.reshape(batch_size, -1, 3) | |
################### | |
# We use mask to get the texture location (to save the memory) | |
if hard_mask is not None: | |
n_point_list = torch.sum(hard_mask.long().reshape(hard_mask.shape[0], -1), dim=-1) | |
sample_tex_pose_list = [] | |
max_point = n_point_list.max() | |
expanded_hard_mask = hard_mask.reshape(batch_size, -1, 1).expand(-1, -1, 3) > 0.5 | |
for i in range(tex_pos.shape[0]): | |
tex_pos_one_shape = tex_pos[i][expanded_hard_mask[i]].reshape(1, -1, 3) | |
if tex_pos_one_shape.shape[1] < max_point: | |
tex_pos_one_shape = torch.cat( | |
[tex_pos_one_shape, torch.zeros( | |
1, max_point - tex_pos_one_shape.shape[1], 3, | |
device=tex_pos_one_shape.device, dtype=torch.float32)], dim=1) | |
sample_tex_pose_list.append(tex_pos_one_shape) | |
tex_pos = torch.cat(sample_tex_pose_list, dim=0) | |
tex_feat = torch.utils.checkpoint.checkpoint( | |
self.synthesizer.get_texture_prediction, | |
planes, | |
tex_pos, | |
use_reentrant=False, | |
) | |
if hard_mask is not None: | |
final_tex_feat = torch.zeros( | |
planes.shape[0], hard_mask.shape[1] * hard_mask.shape[2], tex_feat.shape[-1], device=tex_feat.device) | |
expanded_hard_mask = hard_mask.reshape(hard_mask.shape[0], -1, 1).expand(-1, -1, final_tex_feat.shape[-1]) > 0.5 | |
for i in range(planes.shape[0]): | |
final_tex_feat[i][expanded_hard_mask[i]] = tex_feat[i][:n_point_list[i]].reshape(-1) | |
tex_feat = final_tex_feat | |
return tex_feat.reshape(planes.shape[0], hard_mask.shape[1], hard_mask.shape[2], tex_feat.shape[-1]) | |
def render_mesh(self, mesh_v, mesh_f, cam_mv, render_size=256): | |
''' | |
Function to render a generated mesh with nvdiffrast | |
:param mesh_v: List of vertices for the mesh | |
:param mesh_f: List of faces for the mesh | |
:param cam_mv: 4x4 rotation matrix | |
:return: | |
''' | |
return_value_list = [] | |
for i_mesh in range(len(mesh_v)): | |
return_value = self.geometry.render_mesh( | |
mesh_v[i_mesh], | |
mesh_f[i_mesh].int(), | |
cam_mv[i_mesh], | |
resolution=render_size, | |
hierarchical_mask=False | |
) | |
return_value_list.append(return_value) | |
return_keys = return_value_list[0].keys() | |
return_value = dict() | |
for k in return_keys: | |
value = [v[k] for v in return_value_list] | |
return_value[k] = value | |
mask = torch.cat(return_value['mask'], dim=0) | |
hard_mask = torch.cat(return_value['hard_mask'], dim=0) | |
tex_pos = return_value['tex_pos'] | |
depth = torch.cat(return_value['depth'], dim=0) | |
normal = torch.cat(return_value['normal'], dim=0) | |
return mask, hard_mask, tex_pos, depth, normal | |
def forward_geometry(self, planes, render_cameras, render_size=256): | |
''' | |
Main function of our Generator. It first generate 3D mesh, then render it into 2D image | |
with given `render_cameras`. | |
:param planes: triplane features | |
:param render_cameras: cameras to render generated 3D shape | |
''' | |
B, NV = render_cameras.shape[:2] | |
# Generate 3D mesh first | |
mesh_v, mesh_f, sdf, deformation, v_deformed, sdf_reg_loss = self.get_geometry_prediction(planes) | |
# Render the mesh into 2D image (get 3d position of each image plane) | |
cam_mv = render_cameras | |
run_n_view = cam_mv.shape[1] | |
antilias_mask, hard_mask, tex_pos, depth, normal = self.render_mesh(mesh_v, mesh_f, cam_mv, render_size=render_size) | |
tex_hard_mask = hard_mask | |
tex_pos = [torch.cat([pos[i_view:i_view + 1] for i_view in range(run_n_view)], dim=2) for pos in tex_pos] | |
tex_hard_mask = torch.cat( | |
[torch.cat( | |
[tex_hard_mask[i * run_n_view + i_view: i * run_n_view + i_view + 1] | |
for i_view in range(run_n_view)], dim=2) | |
for i in range(planes.shape[0])], dim=0) | |
# Querying the texture field to predict the texture feature for each pixel on the image | |
tex_feat = self.get_texture_prediction(planes, tex_pos, tex_hard_mask) | |
background_feature = torch.ones_like(tex_feat) # white background | |
# Merge them together | |
img_feat = tex_feat * tex_hard_mask + background_feature * (1 - tex_hard_mask) | |
# We should split it back to the original image shape | |
img_feat = torch.cat( | |
[torch.cat( | |
[img_feat[i:i + 1, :, render_size * i_view: render_size * (i_view + 1)] | |
for i_view in range(run_n_view)], dim=0) for i in range(len(tex_pos))], dim=0) | |
img = img_feat.clamp(0, 1).permute(0, 3, 1, 2).unflatten(0, (B, NV)) | |
antilias_mask = antilias_mask.permute(0, 3, 1, 2).unflatten(0, (B, NV)) | |
depth = -depth.permute(0, 3, 1, 2).unflatten(0, (B, NV)) # transform negative depth to positive | |
normal = normal.permute(0, 3, 1, 2).unflatten(0, (B, NV)) | |
out = { | |
'img': img, | |
'mask': antilias_mask, | |
'depth': depth, | |
'normal': normal, | |
'sdf': sdf, | |
'mesh_v': mesh_v, | |
'mesh_f': mesh_f, | |
'sdf_reg_loss': sdf_reg_loss, | |
} | |
return out | |
def forward(self, images, cameras, render_cameras, render_size: int): | |
# images: [B, V, C_img, H_img, W_img] | |
# cameras: [B, V, 16] | |
# render_cameras: [B, M, D_cam_render] | |
# render_size: int | |
B, M = render_cameras.shape[:2] | |
planes = self.forward_planes(images, cameras) | |
out = self.forward_geometry(planes, render_cameras, render_size=render_size) | |
return { | |
'planes': planes, | |
**out | |
} | |
def extract_mesh( | |
self, | |
planes: torch.Tensor, | |
use_texture_map: bool = False, | |
texture_resolution: int = 1024, | |
**kwargs, | |
): | |
''' | |
Extract a 3D mesh from FlexiCubes. Only support batch_size 1. | |
:param planes: triplane features | |
:param use_texture_map: use texture map or vertex color | |
:param texture_resolution: the resolution of texure map | |
''' | |
assert planes.shape[0] == 1 | |
device = planes.device | |
# predict geometry first | |
mesh_v, mesh_f, sdf, deformation, v_deformed, sdf_reg_loss = self.get_geometry_prediction(planes) | |
vertices, faces = mesh_v[0], mesh_f[0] | |
if not use_texture_map: | |
# query vertex colors | |
vertices_tensor = vertices.unsqueeze(0) | |
vertices_colors = self.synthesizer.get_texture_prediction( | |
planes, vertices_tensor).clamp(0, 1).squeeze(0).cpu().numpy() | |
vertices_colors = (vertices_colors * 255).astype(np.uint8) | |
return vertices.cpu().numpy(), faces.cpu().numpy(), vertices_colors | |
# use x-atlas to get uv mapping for the mesh | |
ctx = dr.RasterizeCudaContext(device=device) | |
uvs, mesh_tex_idx, gb_pos, tex_hard_mask = xatlas_uvmap( | |
self.geometry.renderer.ctx, vertices, faces, resolution=texture_resolution) | |
tex_hard_mask = tex_hard_mask.float() | |
# query the texture field to get the RGB color for texture map | |
tex_feat = self.get_texture_prediction( | |
planes, [gb_pos], tex_hard_mask) | |
background_feature = torch.zeros_like(tex_feat) | |
img_feat = torch.lerp(background_feature, tex_feat, tex_hard_mask) | |
texture_map = img_feat.permute(0, 3, 1, 2).squeeze(0) | |
return vertices, faces, uvs, mesh_tex_idx, texture_map |