Spaces:
Running
Running
import os | |
import numpy as np | |
import torch | |
import torch.nn.functional as F | |
from torchvision.transforms import v2 | |
from torchvision.utils import make_grid, save_image | |
from torchmetrics.image.lpip import LearnedPerceptualImagePatchSimilarity | |
import pytorch_lightning as pl | |
from einops import rearrange, repeat | |
from src.utils.train_util import instantiate_from_config | |
class MVRecon(pl.LightningModule): | |
def __init__( | |
self, | |
lrm_generator_config, | |
lrm_path=None, | |
input_size=256, | |
render_size=192, | |
): | |
super(MVRecon, self).__init__() | |
self.input_size = input_size | |
self.render_size = render_size | |
# init modules | |
self.lrm_generator = instantiate_from_config(lrm_generator_config) | |
if lrm_path is not None: | |
lrm_ckpt = torch.load(lrm_path) | |
self.lrm_generator.load_state_dict(lrm_ckpt['weights'], strict=False) | |
self.lpips = LearnedPerceptualImagePatchSimilarity(net_type='vgg') | |
self.validation_step_outputs = [] | |
def on_fit_start(self): | |
if self.global_rank == 0: | |
os.makedirs(os.path.join(self.logdir, 'images'), exist_ok=True) | |
os.makedirs(os.path.join(self.logdir, 'images_val'), exist_ok=True) | |
def prepare_batch_data(self, batch): | |
lrm_generator_input = {} | |
render_gt = {} # for supervision | |
# input images | |
images = batch['input_images'] | |
images = v2.functional.resize( | |
images, self.input_size, interpolation=3, antialias=True).clamp(0, 1) | |
lrm_generator_input['images'] = images.to(self.device) | |
# input cameras and render cameras | |
input_c2ws = batch['input_c2ws'].flatten(-2) | |
input_Ks = batch['input_Ks'].flatten(-2) | |
target_c2ws = batch['target_c2ws'].flatten(-2) | |
target_Ks = batch['target_Ks'].flatten(-2) | |
render_cameras_input = torch.cat([input_c2ws, input_Ks], dim=-1) | |
render_cameras_target = torch.cat([target_c2ws, target_Ks], dim=-1) | |
render_cameras = torch.cat([render_cameras_input, render_cameras_target], dim=1) | |
input_extrinsics = input_c2ws[:, :, :12] | |
input_intrinsics = torch.stack([ | |
input_Ks[:, :, 0], input_Ks[:, :, 4], | |
input_Ks[:, :, 2], input_Ks[:, :, 5], | |
], dim=-1) | |
cameras = torch.cat([input_extrinsics, input_intrinsics], dim=-1) | |
# add noise to input cameras | |
cameras = cameras + torch.rand_like(cameras) * 0.04 - 0.02 | |
lrm_generator_input['cameras'] = cameras.to(self.device) | |
lrm_generator_input['render_cameras'] = render_cameras.to(self.device) | |
# target images | |
target_images = torch.cat([batch['input_images'], batch['target_images']], dim=1) | |
target_depths = torch.cat([batch['input_depths'], batch['target_depths']], dim=1) | |
target_alphas = torch.cat([batch['input_alphas'], batch['target_alphas']], dim=1) | |
# random crop | |
render_size = np.random.randint(self.render_size, 513) | |
target_images = v2.functional.resize( | |
target_images, render_size, interpolation=3, antialias=True).clamp(0, 1) | |
target_depths = v2.functional.resize( | |
target_depths, render_size, interpolation=0, antialias=True) | |
target_alphas = v2.functional.resize( | |
target_alphas, render_size, interpolation=0, antialias=True) | |
crop_params = v2.RandomCrop.get_params( | |
target_images, output_size=(self.render_size, self.render_size)) | |
target_images = v2.functional.crop(target_images, *crop_params) | |
target_depths = v2.functional.crop(target_depths, *crop_params)[:, :, 0:1] | |
target_alphas = v2.functional.crop(target_alphas, *crop_params)[:, :, 0:1] | |
lrm_generator_input['render_size'] = render_size | |
lrm_generator_input['crop_params'] = crop_params | |
render_gt['target_images'] = target_images.to(self.device) | |
render_gt['target_depths'] = target_depths.to(self.device) | |
render_gt['target_alphas'] = target_alphas.to(self.device) | |
return lrm_generator_input, render_gt | |
def prepare_validation_batch_data(self, batch): | |
lrm_generator_input = {} | |
# input images | |
images = batch['input_images'] | |
images = v2.functional.resize( | |
images, self.input_size, interpolation=3, antialias=True).clamp(0, 1) | |
lrm_generator_input['images'] = images.to(self.device) | |
input_c2ws = batch['input_c2ws'].flatten(-2) | |
input_Ks = batch['input_Ks'].flatten(-2) | |
input_extrinsics = input_c2ws[:, :, :12] | |
input_intrinsics = torch.stack([ | |
input_Ks[:, :, 0], input_Ks[:, :, 4], | |
input_Ks[:, :, 2], input_Ks[:, :, 5], | |
], dim=-1) | |
cameras = torch.cat([input_extrinsics, input_intrinsics], dim=-1) | |
lrm_generator_input['cameras'] = cameras.to(self.device) | |
render_c2ws = batch['render_c2ws'].flatten(-2) | |
render_Ks = batch['render_Ks'].flatten(-2) | |
render_cameras = torch.cat([render_c2ws, render_Ks], dim=-1) | |
lrm_generator_input['render_cameras'] = render_cameras.to(self.device) | |
lrm_generator_input['render_size'] = 384 | |
lrm_generator_input['crop_params'] = None | |
return lrm_generator_input | |
def forward_lrm_generator( | |
self, | |
images, | |
cameras, | |
render_cameras, | |
render_size=192, | |
crop_params=None, | |
chunk_size=1, | |
): | |
planes = torch.utils.checkpoint.checkpoint( | |
self.lrm_generator.forward_planes, | |
images, | |
cameras, | |
use_reentrant=False, | |
) | |
frames = [] | |
for i in range(0, render_cameras.shape[1], chunk_size): | |
frames.append( | |
torch.utils.checkpoint.checkpoint( | |
self.lrm_generator.synthesizer, | |
planes, | |
cameras=render_cameras[:, i:i+chunk_size], | |
render_size=render_size, | |
crop_params=crop_params, | |
use_reentrant=False | |
) | |
) | |
frames = { | |
k: torch.cat([r[k] for r in frames], dim=1) | |
for k in frames[0].keys() | |
} | |
return frames | |
def forward(self, lrm_generator_input): | |
images = lrm_generator_input['images'] | |
cameras = lrm_generator_input['cameras'] | |
render_cameras = lrm_generator_input['render_cameras'] | |
render_size = lrm_generator_input['render_size'] | |
crop_params = lrm_generator_input['crop_params'] | |
out = self.forward_lrm_generator( | |
images, | |
cameras, | |
render_cameras, | |
render_size=render_size, | |
crop_params=crop_params, | |
chunk_size=1, | |
) | |
render_images = torch.clamp(out['images_rgb'], 0.0, 1.0) | |
render_depths = out['images_depth'] | |
render_alphas = torch.clamp(out['images_weight'], 0.0, 1.0) | |
out = { | |
'render_images': render_images, | |
'render_depths': render_depths, | |
'render_alphas': render_alphas, | |
} | |
return out | |
def training_step(self, batch, batch_idx): | |
lrm_generator_input, render_gt = self.prepare_batch_data(batch) | |
render_out = self.forward(lrm_generator_input) | |
loss, loss_dict = self.compute_loss(render_out, render_gt) | |
self.log_dict(loss_dict, prog_bar=True, logger=True, on_step=True, on_epoch=True) | |
if self.global_step % 1000 == 0 and self.global_rank == 0: | |
B, N, C, H, W = render_gt['target_images'].shape | |
N_in = lrm_generator_input['images'].shape[1] | |
input_images = v2.functional.resize( | |
lrm_generator_input['images'], (H, W), interpolation=3, antialias=True).clamp(0, 1) | |
input_images = torch.cat( | |
[input_images, torch.ones(B, N-N_in, C, H, W).to(input_images)], dim=1) | |
input_images = rearrange( | |
input_images, 'b n c h w -> b c h (n w)') | |
target_images = rearrange( | |
render_gt['target_images'], 'b n c h w -> b c h (n w)') | |
render_images = rearrange( | |
render_out['render_images'], 'b n c h w -> b c h (n w)') | |
target_alphas = rearrange( | |
repeat(render_gt['target_alphas'], 'b n 1 h w -> b n 3 h w'), 'b n c h w -> b c h (n w)') | |
render_alphas = rearrange( | |
repeat(render_out['render_alphas'], 'b n 1 h w -> b n 3 h w'), 'b n c h w -> b c h (n w)') | |
target_depths = rearrange( | |
repeat(render_gt['target_depths'], 'b n 1 h w -> b n 3 h w'), 'b n c h w -> b c h (n w)') | |
render_depths = rearrange( | |
repeat(render_out['render_depths'], 'b n 1 h w -> b n 3 h w'), 'b n c h w -> b c h (n w)') | |
MAX_DEPTH = torch.max(target_depths) | |
target_depths = target_depths / MAX_DEPTH * target_alphas | |
render_depths = render_depths / MAX_DEPTH | |
grid = torch.cat([ | |
input_images, | |
target_images, render_images, | |
target_alphas, render_alphas, | |
target_depths, render_depths, | |
], dim=-2) | |
grid = make_grid(grid, nrow=target_images.shape[0], normalize=True, value_range=(0, 1)) | |
save_image(grid, os.path.join(self.logdir, 'images', f'train_{self.global_step:07d}.png')) | |
return loss | |
def compute_loss(self, render_out, render_gt): | |
# NOTE: the rgb value range of OpenLRM is [0, 1] | |
render_images = render_out['render_images'] | |
target_images = render_gt['target_images'].to(render_images) | |
render_images = rearrange(render_images, 'b n ... -> (b n) ...') * 2.0 - 1.0 | |
target_images = rearrange(target_images, 'b n ... -> (b n) ...') * 2.0 - 1.0 | |
loss_mse = F.mse_loss(render_images, target_images) | |
loss_lpips = 2.0 * self.lpips(render_images, target_images) | |
render_alphas = render_out['render_alphas'] | |
target_alphas = render_gt['target_alphas'] | |
loss_mask = F.mse_loss(render_alphas, target_alphas) | |
loss = loss_mse + loss_lpips + loss_mask | |
prefix = 'train' | |
loss_dict = {} | |
loss_dict.update({f'{prefix}/loss_mse': loss_mse}) | |
loss_dict.update({f'{prefix}/loss_lpips': loss_lpips}) | |
loss_dict.update({f'{prefix}/loss_mask': loss_mask}) | |
loss_dict.update({f'{prefix}/loss': loss}) | |
return loss, loss_dict | |
def validation_step(self, batch, batch_idx): | |
lrm_generator_input = self.prepare_validation_batch_data(batch) | |
render_out = self.forward(lrm_generator_input) | |
render_images = render_out['render_images'] | |
render_images = rearrange(render_images, 'b n c h w -> b c h (n w)') | |
self.validation_step_outputs.append(render_images) | |
def on_validation_epoch_end(self): | |
images = torch.cat(self.validation_step_outputs, dim=-1) | |
all_images = self.all_gather(images) | |
all_images = rearrange(all_images, 'r b c h w -> (r b) c h w') | |
if self.global_rank == 0: | |
image_path = os.path.join(self.logdir, 'images_val', f'val_{self.global_step:07d}.png') | |
grid = make_grid(all_images, nrow=1, normalize=True, value_range=(0, 1)) | |
save_image(grid, image_path) | |
print(f"Saved image to {image_path}") | |
self.validation_step_outputs.clear() | |
def configure_optimizers(self): | |
lr = self.learning_rate | |
params = [] | |
lrm_params_fast, lrm_params_slow = [], [] | |
for n, p in self.lrm_generator.named_parameters(): | |
if 'adaLN_modulation' in n or 'camera_embedder' in n: | |
lrm_params_fast.append(p) | |
else: | |
lrm_params_slow.append(p) | |
params.append({"params": lrm_params_fast, "lr": lr, "weight_decay": 0.01 }) | |
params.append({"params": lrm_params_slow, "lr": lr / 10.0, "weight_decay": 0.01 }) | |
optimizer = torch.optim.AdamW(params, lr=lr, betas=(0.90, 0.95)) | |
scheduler = torch.optim.lr_scheduler.CosineAnnealingWarmRestarts(optimizer, 3000, eta_min=lr/4) | |
return {'optimizer': optimizer, 'lr_scheduler': scheduler} | |