Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,18 +1,78 @@
|
|
1 |
import gradio as gr
|
2 |
from huggingface_hub import InferenceClient
|
3 |
import json
|
4 |
-
import re
|
5 |
import uuid
|
6 |
from PIL import Image
|
7 |
from bs4 import BeautifulSoup
|
8 |
import requests
|
9 |
import random
|
10 |
-
from
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
|
17 |
def extract_text_from_webpage(html_content):
|
18 |
soup = BeautifulSoup(html_content, 'html.parser')
|
@@ -62,10 +122,9 @@ def respond(message, history):
|
|
62 |
|
63 |
# Handle image processing
|
64 |
if message["files"]:
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
vqa += generate_caption_instructblip(image, message["text"])
|
69 |
|
70 |
# Define function metadata for user interface
|
71 |
functions_metadata = [
|
|
|
1 |
import gradio as gr
|
2 |
from huggingface_hub import InferenceClient
|
3 |
import json
|
|
|
4 |
import uuid
|
5 |
from PIL import Image
|
6 |
from bs4 import BeautifulSoup
|
7 |
import requests
|
8 |
import random
|
9 |
+
from transformers import LlavaProcessor, LlavaForConditionalGeneration, TextIteratorStreamer
|
10 |
+
from threading import Thread
|
11 |
+
import re
|
12 |
+
import time
|
13 |
+
import torch
|
14 |
+
import cv2
|
15 |
+
|
16 |
+
model_id = "llava-hf/llava-interleave-qwen-0.5b-hf"
|
17 |
+
|
18 |
+
processor = LlavaProcessor.from_pretrained(model_id)
|
19 |
+
|
20 |
+
model = LlavaForConditionalGeneration.from_pretrained(model_id, low_cpu_mem_usage=True)
|
21 |
+
model.to("cpu")
|
22 |
+
|
23 |
+
|
24 |
+
def sample_frames(video_file) :
|
25 |
+
try:
|
26 |
+
video = cv2.VideoCapture(video_file)
|
27 |
+
total_frames = int(video.get(cv2.CAP_PROP_FRAME_COUNT))
|
28 |
+
num_frames = 12
|
29 |
+
interval = total_frames // num_frames
|
30 |
+
frames = []
|
31 |
+
for i in range(total_frames):
|
32 |
+
ret, frame = video.read()
|
33 |
+
pil_img = Image.fromarray(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB))
|
34 |
+
if not ret:
|
35 |
+
continue
|
36 |
+
if i % interval == 0:
|
37 |
+
frames.append(pil_img)
|
38 |
+
video.release()
|
39 |
+
return frames
|
40 |
+
except:
|
41 |
+
frames=[]
|
42 |
+
return frames
|
43 |
+
|
44 |
+
def llava(user_prompt, history):
|
45 |
+
image = user_prompt["files"][-1]
|
46 |
+
txt = user_prompt["text"]
|
47 |
+
img = user_prompt["files"]
|
48 |
+
|
49 |
+
video_extensions = ("avi", "mp4", "mov", "mkv", "flv", "wmv", "mjpeg", "wav", "gif", "webm", "m4v", "3gp")
|
50 |
+
image_extensions = Image.registered_extensions()
|
51 |
+
image_extensions = tuple([ex for ex, f in image_extensions.items()])
|
52 |
+
|
53 |
+
if image.endswith(video_extensions):
|
54 |
+
image = sample_frames(image)
|
55 |
+
image_tokens = "<image>" * int(len(image))
|
56 |
+
prompt = f"<|im_start|>user {image_tokens}\n{user_prompt}<|im_end|><|im_start|>assistant"
|
57 |
+
|
58 |
+
elif image.endswith(image_extensions):
|
59 |
+
image = Image.open(image).convert("RGB")
|
60 |
+
prompt = f"<|im_start|>user <image>\n{user_prompt}<|im_end|><|im_start|>assistant"
|
61 |
+
|
62 |
+
print(len(image))
|
63 |
+
|
64 |
+
inputs = processor(prompt, image, return_tensors="pt")
|
65 |
+
streamer = TextIteratorStreamer(processor, skip_prompt=True, **{"skip_special_tokens": True})
|
66 |
+
generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=1024)
|
67 |
+
generated_text = ""
|
68 |
+
|
69 |
+
thread = Thread(target=model.generate, kwargs=generation_kwargs)
|
70 |
+
thread.start()
|
71 |
|
72 |
+
buffer = ""
|
73 |
+
for new_text in streamer:
|
74 |
+
buffer += new_text
|
75 |
+
yield buffer
|
76 |
|
77 |
def extract_text_from_webpage(html_content):
|
78 |
soup = BeautifulSoup(html_content, 'html.parser')
|
|
|
122 |
|
123 |
# Handle image processing
|
124 |
if message["files"]:
|
125 |
+
llava(message, history)
|
126 |
+
break
|
127 |
+
|
|
|
128 |
|
129 |
# Define function metadata for user interface
|
130 |
functions_metadata = [
|