AdamyaG's picture
Update app.py
0f338fe verified
raw
history blame
11.7 kB
import gradio as gr
from huggingface_hub import InferenceClient
import json
import uuid
from PIL import Image
from bs4 import BeautifulSoup
import requests
import random
from transformers import LlavaProcessor, LlavaForConditionalGeneration, TextIteratorStreamer
from threading import Thread
import re
import time
import torch
import cv2
model_id = "llava-hf/llava-interleave-qwen-0.5b-hf"
processor = LlavaProcessor.from_pretrained(model_id)
model = LlavaForConditionalGeneration.from_pretrained(model_id)
model.to("cpu")
def llava(message, history):
if message["files"]:
image = message["files"][0]
else:
for hist in history:
if type(hist[0])==tuple:
image = hist[0][0]
txt = message["text"]
gr.Info("Analyzing image")
image = Image.open(image).convert("RGB")
prompt = f"<|im_start|>user <image>\n{txt}<|im_end|><|im_start|>assistant"
inputs = processor(prompt, image, return_tensors="pt")
return inputs
def extract_text_from_webpage(html_content):
soup = BeautifulSoup(html_content, 'html.parser')
for tag in soup(["script", "style", "header", "footer"]):
tag.extract()
return soup.get_text(strip=True)
def search(query):
term = query
start = 0
all_results = []
max_chars_per_page = 8000
with requests.Session() as session:
resp = session.get(
url="https://www.google.com/search",
headers={"User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:109.0) Gecko/20100101 Firefox/111.0"},
params={"q": term, "num": 3, "udm": 14},
timeout=5,
verify=None,
)
resp.raise_for_status()
soup = BeautifulSoup(resp.text, "html.parser")
result_block = soup.find_all("div", attrs={"class": "g"})
for result in result_block:
link = result.find("a", href=True)
link = link["href"]
try:
webpage = session.get(link, headers={"User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:109.0) Gecko/20100101 Firefox/111.0"}, timeout=5, verify=False)
webpage.raise_for_status()
visible_text = extract_text_from_webpage(webpage.text)
if len(visible_text) > max_chars_per_page:
visible_text = visible_text[:max_chars_per_page]
all_results.append({"link": link, "text": visible_text})
except requests.exceptions.RequestException:
all_results.append({"link": link, "text": None})
return all_results
# Initialize inference clients for different models
client_gemma = InferenceClient("google/gemma-1.1-7b-it")
client_mixtral = InferenceClient("NousResearch/Nous-Hermes-2-Mixtral-8x7B-DPO")
client_llama = InferenceClient("meta-llama/Meta-Llama-3-8B-Instruct")
# Define the main chat function
def respond(message, history):
func_caller = []
user_prompt = message
# Handle image processing
if message["files"]:
inputs = llava(message, history)
streamer = TextIteratorStreamer(processor, skip_prompt=True, **{"skip_special_tokens": True})
generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=1024)
thread = Thread(target=model.generate, kwargs=generation_kwargs)
thread.start()
buffer = ""
for new_text in streamer:
buffer += new_text
yield buffer
else:
functions_metadata = [
{"type": "function", "function": {"name": "web_search", "description": "Search query on google", "parameters": {"type": "object", "properties": {"query": {"type": "string", "description": "web search query"}}, "required": ["query"]}}},
{"type": "function", "function": {"name": "general_query", "description": "Reply general query of USER", "parameters": {"type": "object", "properties": {"prompt": {"type": "string", "description": "A detailed prompt"}}, "required": ["prompt"]}}},
{"type": "function", "function": {"name": "image_generation", "description": "Generate image for user", "parameters": {"type": "object", "properties": {"query": {"type": "string", "description": "image generation prompt"}, "number_of_image": {"type": "integer", "description": "number of images to generate"}}, "required": ["query"]}}},
{"type": "function", "function": {"name": "image_qna", "description": "Answer question asked by user related to image", "parameters": {"type": "object", "properties": {"query": {"type": "string", "description": "Question by user"}}, "required": ["query"]}}},
]
message_text = message["text"]
func_caller.append({"role": "user", "content": f'[SYSTEM]You are a helpful fashion assistant. You have access to the following functions: \n {str(functions_metadata)}\n\nTo use these functions respond with:\n<functioncall> {{ "name": "function_name", "arguments": {{ "arg_1": "value_1", "arg_1": "value_1", ... }} }} </functioncall> [USER] {message_text}'})
response = client_gemma.chat_completion(func_caller, max_tokens=150)
response = str(response)
try:
response = response[int(response.find("{")):int(response.index("</"))]
except:
print("A error occured")
response = response.replace("\\n", "")
response = response.replace("\\'", "'")
response = response.replace('\\"', '"')
print(f"\n{response}")
func_caller.append({"role": "assistant", "content": f"<functioncall>{response}</functioncall>"})
try:
json_data = json.loads(str(response))
if json_data["name"] == "web_search":
query = json_data["arguments"]["query"]
gr.Info("Searching Web")
web_results = search(query)
gr.Info("Extracting relevant Info")
web2 = ' '.join([f"Link: {res['link']}\nText: {res['text']}\n\n" for res in web_results])
messages = f"<|im_start|>system\nYou are a helpful fashion assistant made by Team Star Boys. You are provided with WEB results from which you can find informations to answer users query in Structured and More better way. You do not say Unnecesarry things Only say thing which is important and relevant. You also Expert in fashion and apparel field and also learn and try to answer from contexts related to previous question. Try your best to give best response possible to user. You also try to show emotions using Emojis and reply like human, use short forms, friendly tone and emotions.<|im_end|>"
for msg in history:
messages += f"\n<|im_start|>user\n{str(msg[0])}<|im_end|>"
messages += f"\n<|im_start|>assistant\n{str(msg[1])}<|im_end|>"
messages+=f"\n<|im_start|>user\n{message_text}<|im_end|>\n<|im_start|>web_result\n{web2}<|im_end|>\n<|im_start|>assistant\n"
stream = client_mixtral.text_generation(messages, max_new_tokens=2000, do_sample=True, stream=True, details=True, return_full_text=False)
output = ""
for response in stream:
if not response.token.text == "<|im_end|>":
output += response.token.text
yield output
elif json_data["name"] == "image_generation":
query = json_data["arguments"]["query"]
gr.Info("Generating Image, Please wait 10 sec...")
seed = random.randint(1, 99999)
image = f"![](https://image.pollinations.ai/prompt/{message_text}{query}?seed={seed}&nologo=True)"
image = image.replace("\\n", "")
image = image.replace(" ", "%20")
yield image
time.sleep(8)
gr.Info("We are going to Update Our Image Generation Engine to more powerful ones in Next Update. ThankYou")
elif json_data["name"] == "image_qna":
inputs = llava(message, history)
streamer = TextIteratorStreamer(processor, skip_prompt=True, **{"skip_special_tokens": True})
generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=1024)
thread = Thread(target=model.generate, kwargs=generation_kwargs)
thread.start()
buffer = ""
for new_text in streamer:
buffer += new_text
yield buffer
else:
messages = f"<|start_header_id|>system\nYou are a helpful fashion assistant made by Team Star Boys. You answers users query like human friend. You are also Expert in fashion and apparel field and also learn and try to answer from contexts related to previous question. Try your best to give best response possible to user. You also try to show emotions using Emojis and reply like human, use short forms, friendly tone and emotions.<|end_header_id|>"
for msg in history:
messages += f"\n<|start_header_id|>user\n{str(msg[0])}<|end_header_id|>"
messages += f"\n<|start_header_id|>assistant\n{str(msg[1])}<|end_header_id|>"
messages+=f"\n<|start_header_id|>user\n{message_text}<|end_header_id|>\n<|start_header_id|>assistant\n"
stream = client_llama.text_generation(messages, max_new_tokens=2000, do_sample=True, stream=True, details=True, return_full_text=False)
output = ""
for response in stream:
if not response.token.text == "<|eot_id|>":
output += response.token.text
yield output
except:
messages = f"<|start_header_id|>system\nYou are a helpful fashion assistant made by Team Star Boys. You answers users query like human friend. You are also Expert in fashion and apparel field and also learn and try to answer from contexts related to previous question. Try your best to give best response possible to user. You also try to show emotions using Emojis and reply like human, use short forms, friendly tone and emotions.<|end_header_id|>"
for msg in history:
messages += f"\n<|start_header_id|>user\n{str(msg[0])}<|end_header_id|>"
messages += f"\n<|start_header_id|>assistant\n{str(msg[1])}<|end_header_id|>"
messages+=f"\n<|start_header_id|>user\n{message_text}<|end_header_id|>\n<|start_header_id|>assistant\n"
stream = client_llama.text_generation(messages, max_new_tokens=2000, do_sample=True, stream=True, details=True, return_full_text=False)
output = ""
for response in stream:
if not response.token.text == "<|eot_id|>":
output += response.token.text
yield output
# Create the Gradio interface
demo = gr.ChatInterface(
fn=respond,
chatbot=gr.Chatbot(show_copy_button=True, likeable=True, layout="panel"),
description ="# Lola \n ### Lola can engage in chat, generate images, perform web searches, and Q&A with images.",
textbox=gr.MultimodalTextbox(),
multimodal=True,
concurrency_limit=200,
examples=[
{"text": "What cn I wear with a yellow Kurta?",},
{"text": "What's the preferred shirt color for an interview?",},
{"text": "How can I dress more smartly?",},
{"text": "Tell about some good accessories for a traditional Indian wedding",},
{"text": "What's the colour of thee frock in the given image?", "files": ["./frock.png"]},
],
cache_examples=False,
)
demo.launch()