|
import gradio as gr |
|
import os |
|
from PIL import Image |
|
import subprocess |
|
|
|
|
|
|
|
def check_img_input(control_image): |
|
if control_image is None: |
|
raise gr.Error("Please select or upload an input image") |
|
|
|
|
|
def optimize_stage_1(image_block: Image.Image, preprocess_chk: bool, elevation_slider: float): |
|
if not os.path.exists('tmp_data'): |
|
os.makedirs('tmp_data') |
|
if preprocess_chk: |
|
|
|
image_block.save('tmp_data/tmp.png') |
|
|
|
|
|
subprocess.run([f'python process.py tmp_data/tmp.png'], shell=True) |
|
else: |
|
image_block.save('tmp_data/tmp_rgba.png') |
|
|
|
|
|
subprocess.run([ |
|
f'python main.py --config configs/image.yaml input=tmp_data/tmp_rgba.png save_path=tmp mesh_format=glb elevation={elevation_slider} force_cuda_rast=True'], |
|
shell=True) |
|
|
|
return f'logs/tmp_mesh.glb' |
|
|
|
|
|
def optimize_stage_2(elevation_slider: float): |
|
|
|
subprocess.run([ |
|
f'python main2.py --config configs/image.yaml input=tmp_data/tmp_rgba.png save_path=tmp mesh_format=glb elevation={elevation_slider} force_cuda_rast=True'], |
|
shell=True) |
|
|
|
return f'logs/tmp.glb' |
|
|
|
|
|
if __name__ == "__main__": |
|
_TITLE = '''DreamGaussian: Generative Gaussian Splatting for Efficient 3D Content Creation''' |
|
|
|
_DESCRIPTION = ''' |
|
<div> |
|
<a style="display:inline-block" href="https://dreamgaussian.github.io"><img src='https://img.shields.io/badge/public_website-8A2BE2'></a> |
|
<a style="display:inline-block; margin-left: .5em" href="https://arxiv.org/abs/2309.16653"><img src="https://img.shields.io/badge/2306.16928-f9f7f7?logo="></a> |
|
<a style="display:inline-block; margin-left: .5em" href='https://github.com/dreamgaussian/dreamgaussian'><img src='https://img.shields.io/github/stars/dreamgaussian/dreamgaussian?style=social'/></a> |
|
</div> |
|
We present DreamGausssion, a 3D content generation framework that significantly improves the efficiency of 3D content creation. |
|
''' |
|
_IMG_USER_GUIDE = "Please upload an image in the block above (or choose an example above) and click **Generate 3D**." |
|
|
|
|
|
example_folder = os.path.join(os.path.dirname(__file__), 'data') |
|
example_fns = os.listdir(example_folder) |
|
example_fns.sort() |
|
examples_full = [os.path.join(example_folder, x) for x in example_fns if x.endswith('.png')] |
|
|
|
|
|
with gr.Blocks(title=_TITLE, theme=gr.themes.Soft()) as demo: |
|
with gr.Row(): |
|
with gr.Column(scale=1): |
|
gr.Markdown('# ' + _TITLE) |
|
gr.Markdown(_DESCRIPTION) |
|
|
|
|
|
with gr.Row(variant='panel'): |
|
with gr.Column(scale=5): |
|
image_block = gr.Image(type='pil', image_mode='RGBA', height=290, label='Input image', tool=None) |
|
|
|
elevation_slider = gr.Slider(-90, 90, value=0, step=1, label='Estimated elevation angle') |
|
gr.Markdown( |
|
"default to 0 (horizontal), range from [-90, 90]. If you upload a look-down image, try a value like -30") |
|
|
|
preprocess_chk = gr.Checkbox(True, |
|
label='Preprocess image automatically (remove background and recenter object)') |
|
|
|
gr.Examples( |
|
examples=examples_full, |
|
inputs=[image_block], |
|
outputs=[image_block], |
|
cache_examples=False, |
|
label='Examples (click one of the images below to start)', |
|
examples_per_page=40 |
|
) |
|
img_run_btn = gr.Button("Generate 3D") |
|
img_guide_text = gr.Markdown(_IMG_USER_GUIDE, visible=True) |
|
|
|
with gr.Column(scale=5): |
|
obj3d_stage1 = gr.Model3D(clear_color=[0.0, 0.0, 0.0, 0.0], label="3D Model (Stage 1)") |
|
obj3d = gr.Model3D(clear_color=[0.0, 0.0, 0.0, 0.0], label="3D Model (Final)") |
|
|
|
|
|
|
|
img_run_btn.click(check_img_input, inputs=[image_block], queue=False).success(optimize_stage_1, |
|
inputs=[image_block, |
|
preprocess_chk, |
|
elevation_slider], |
|
outputs=[ |
|
obj3d_stage1]).success( |
|
optimize_stage_2, inputs=[elevation_slider], outputs=[obj3d]) |
|
|
|
demo.queue().launch(share=True) |