EmotionalIntensityControl / utils_data.py
AdalAbilbekov's picture
12345
ef42a25
import os
import argparse
import glob
import logging
import numpy as np
import matplotlib.pyplot as plt
import data_loader as loaders
import data_collate as collates
import json
from model import GradTTSXvector, GradTTSWithEmo
import torch
def intersperse(lst, item):
# Adds blank symbol
result = [item] * (len(lst) * 2 + 1)
result[1::2] = lst
return result
def parse_filelist(filelist_path, split_char="|"):
with open(filelist_path, encoding='utf-8') as f:
filepaths_and_text = [line.strip().split(split_char) for line in f]
return filepaths_and_text
def latest_checkpoint_path(dir_path, regex="grad_*.pt"):
f_list = glob.glob(os.path.join(dir_path, regex))
f_list.sort(key=lambda f: int("".join(filter(str.isdigit, f))))
x = f_list[-1]
return x
def load_checkpoint(checkpoint_path, model, optimizer=None):
assert os.path.isfile(checkpoint_path)
checkpoint_dict = torch.load(checkpoint_path, map_location='cpu')
iteration = 1
if 'iteration' in checkpoint_dict.keys():
iteration = checkpoint_dict['iteration']
if 'learning_rate' in checkpoint_dict.keys():
learning_rate = checkpoint_dict['learning_rate']
else:
learning_rate = None
if optimizer is not None and 'optimizer' in checkpoint_dict.keys():
optimizer.load_state_dict(checkpoint_dict['optimizer'])
saved_state_dict = checkpoint_dict['model']
if hasattr(model, 'module'):
state_dict = model.module.state_dict()
else:
state_dict = model.state_dict()
new_state_dict = {}
for k, v in state_dict.items():
try:
new_state_dict[k] = saved_state_dict[k]
except:
logger.info("%s is not in the checkpoint" % k)
print("%s is not in the checkpoint" % k)
new_state_dict[k] = v
if hasattr(model, 'module'):
model.module.load_state_dict(new_state_dict)
else:
model.load_state_dict(new_state_dict)
return model, optimizer, learning_rate, iteration
def load_checkpoint_no_logger(checkpoint_path, model, optimizer=None):
assert os.path.isfile(checkpoint_path)
checkpoint_dict = torch.load(checkpoint_path, map_location='cpu')
iteration = 1
if 'iteration' in checkpoint_dict.keys():
iteration = checkpoint_dict['iteration']
if 'learning_rate' in checkpoint_dict.keys():
learning_rate = checkpoint_dict['learning_rate']
else:
learning_rate = None
if optimizer is not None and 'optimizer' in checkpoint_dict.keys():
optimizer.load_state_dict(checkpoint_dict['optimizer'])
saved_state_dict = checkpoint_dict['model']
if hasattr(model, 'module'):
state_dict = model.module.state_dict()
else:
state_dict = model.state_dict()
new_state_dict = {}
for k, v in state_dict.items():
try:
new_state_dict[k] = saved_state_dict[k]
except:
print("%s is not in the checkpoint" % k)
new_state_dict[k] = v
if hasattr(model, 'module'):
model.module.load_state_dict(new_state_dict)
else:
model.load_state_dict(new_state_dict)
return model, optimizer, learning_rate, iteration
def save_figure_to_numpy(fig):
data = np.fromstring(fig.canvas.tostring_rgb(), dtype=np.uint8, sep='')
data = data.reshape(fig.canvas.get_width_height()[::-1] + (3,))
return data
def plot_tensor(tensor):
plt.style.use('default')
fig, ax = plt.subplots(figsize=(12, 3))
im = ax.imshow(tensor, aspect="auto", origin="lower", interpolation='none')
plt.colorbar(im, ax=ax)
plt.tight_layout()
fig.canvas.draw()
data = save_figure_to_numpy(fig)
plt.close()
return data
def save_plot(tensor, savepath):
plt.style.use('default')
fig, ax = plt.subplots(figsize=(12, 3))
im = ax.imshow(tensor, aspect="auto", origin="lower", interpolation='none')
plt.colorbar(im, ax=ax)
plt.tight_layout()
fig.canvas.draw()
plt.savefig(savepath)
plt.close()
return
def get_correct_class(hps, train=True):
if train:
if hps.xvector and hps.pe:
raise NotImplementedError
elif hps.xvector: # no pitch energy
raise NotImplementedError
loader = loaders.XvectorLoader
collate = collates.XvectorCollate
model = GradTTSXvector
dataset = loader(utts=hps.data.train_utts,
hparams=hps.data,
feats_scp=hps.data.train_feats_scp,
utt2phns=hps.data.train_utt2phns,
phn2id=hps.data.phn2id,
utt2phn_duration=hps.data.train_utt2phn_duration,
spk_xvector_scp=hps.data.train_spk_xvector_scp,
utt2spk_name=hps.data.train_utt2spk)
elif hps.pe:
raise NotImplementedError
else: # no PE, no xvector
loader = loaders.SpkIDLoaderWithEmo
collate = collates.SpkIDCollateWithEmo
model = GradTTSWithEmo
dataset = loader(utts=hps.data.train_utts,
hparams=hps.data,
feats_scp=hps.data.train_feats_scp,
utt2text=hps.data.train_utt2phns,
utt2spk=hps.data.train_utt2spk,
utt2emo=hps.data.train_utt2emo)
else:
if hps.xvector and hps.pe:
raise NotImplementedError
elif hps.xvector:
raise NotImplementedError
loader = loaders.XvectorLoader
collate = collates.XvectorCollate
model = GradTTSXvector
dataset = loader(utts=hps.data.val_utts,
hparams=hps.data,
feats_scp=hps.data.val_feats_scp,
utt2phns=hps.data.val_utt2phns,
phn2id=hps.data.phn2id,
utt2phn_duration=hps.data.val_utt2phn_duration,
spk_xvector_scp=hps.data.val_spk_xvector_scp,
utt2spk_name=hps.data.val_utt2spk)
elif hps.pe:
raise NotImplementedError
else: # no PE, no xvector
loader = loaders.SpkIDLoaderWithEmo
collate = collates.SpkIDCollateWithEmo
model = GradTTSWithEmo
dataset = loader(utts=hps.data.val_utts,
hparams=hps.data,
feats_scp=hps.data.val_feats_scp,
utt2text=hps.data.val_utt2phns,
utt2spk=hps.data.val_utt2spk,
utt2emo=hps.data.val_utt2emo)
return dataset, collate(), model
def get_hparams(init=True):
parser = argparse.ArgumentParser()
parser.add_argument('-c', '--config', type=str, default="./configs/train_grad.json",
help='JSON file for configuration')
parser.add_argument('-m', '--model', type=str, required=True,
help='Model name')
parser.add_argument('-s', '--seed', type=int, default=1234)
parser.add_argument('--not-pretrained', action='store_true', help='if set to true, then train from scratch')
args = parser.parse_args()
model_dir = os.path.join("./logs", args.model)
if not os.path.exists(model_dir):
os.makedirs(model_dir)
config_path = args.config
config_save_path = os.path.join(model_dir, "config.json")
if init:
with open(config_path, "r") as f:
data = f.read()
with open(config_save_path, "w") as f:
f.write(data)
else:
with open(config_save_path, "r") as f:
data = f.read()
config = json.loads(data)
hparams = HParams(**config)
hparams.model_dir = model_dir
hparams.train.seed = args.seed
hparams.not_pretrained = args.not_pretrained
return hparams
class HParams():
def __init__(self, **kwargs):
for k, v in kwargs.items():
if type(v) == dict:
v = HParams(**v)
self[k] = v
def keys(self):
return self.__dict__.keys()
def items(self):
return self.__dict__.items()
def values(self):
return self.__dict__.values()
def __len__(self):
return len(self.__dict__)
def __getitem__(self, key):
return getattr(self, key)
def __setitem__(self, key, value):
return setattr(self, key, value)
def __contains__(self, key):
return key in self.__dict__
def __repr__(self):
return self.__dict__.__repr__()
def get_logger(model_dir, filename="train.log"):
global logger
logger = logging.getLogger(os.path.basename(model_dir))
logger.setLevel(logging.DEBUG)
formatter = logging.Formatter("%(asctime)s\t%(name)s\t%(levelname)s\t%(message)s")
if not os.path.exists(model_dir):
os.makedirs(model_dir)
h = logging.FileHandler(os.path.join(model_dir, filename))
h.setLevel(logging.DEBUG)
h.setFormatter(formatter)
logger.addHandler(h)
return logger
def save_checkpoint(model, optimizer, learning_rate, iteration, checkpoint_path):
logger.info("Saving model and optimizer state at iteration {} to {}".format(
iteration, checkpoint_path))
if hasattr(model, 'module'):
state_dict = model.module.state_dict()
else:
state_dict = model.state_dict()
torch.save({'model': state_dict,
'iteration': iteration,
'optimizer': optimizer.state_dict(),
'learning_rate': learning_rate}, checkpoint_path)
def get_hparams_decode(model_dir=None):
parser = argparse.ArgumentParser()
parser.add_argument('-c', '--config', type=str, default="./configs/train_grad.json",
help='JSON file for configuration')
parser.add_argument('-m', '--model', type=str, default=model_dir,
help='Model name')
parser.add_argument('-s', '--seed', type=int, default=1234)
parser.add_argument('-t', "--timesteps", type=int, default=10, help='how many timesteps to perform reverse diffusion')
parser.add_argument("--stoc", action='store_true', default=False, help="Whether to add stochastic term into decoding")
parser.add_argument("-g", "--guidance", type=float, default=3, help='classifier guidance')
parser.add_argument('-n', '--noise', type=float, default=1.5, help='to multiply sigma')
parser.add_argument('-f', '--file', type=str, required=True, help='path to a file with texts to synthesize')
parser.add_argument('-r', '--generated_path', type=str, required=True, help='path to save wav files')
args = parser.parse_args()
model_dir = os.path.join("./logs", args.model)
if not os.path.exists(model_dir):
os.makedirs(model_dir)
config_path = args.config
config_save_path = os.path.join(model_dir, "config.json") # NOTE: which config to load
with open(config_path, "r") as f:
data = f.read()
config = json.loads(data)
hparams = HParams(**config)
hparams.model_dir = model_dir
hparams.train.seed = args.seed
return hparams, args
def get_hparams_decode_two_mixture(model_dir=None):
parser = argparse.ArgumentParser()
parser.add_argument('-c', '--config', type=str, default="./configs/train_grad.json",
help='JSON file for configuration')
parser.add_argument('-m', '--model', type=str, required=False, default='.',
help='Model name')
parser.add_argument('-s', '--seed', type=int, default=1234)
parser.add_argument('--dataset', choices=['train', 'val'], default='val', type=str, help='which dataset to use')
parser.add_argument('--use-control-spk', action='store_true', help='whether to use GT spk or other spk')
parser.add_argument('--control-spk-id', default=None, type=int, help='if use control spk, then which spk')
parser.add_argument("--use-control-emo", action='store_true')
parser.add_argument("--control-emo-id1", type=int)
parser.add_argument("--control-emo-id2", type=int)
parser.add_argument("--emo1-weight", type=float, default=0.5)
parser.add_argument('--control-spk-name', default=None, type=str, help='if use control spk, then which spk')
parser.add_argument("--max-utt-num", default=100, type=int, help='maximum utts number to decode')
parser.add_argument("--specify-utt-name", default=None, type=str, help='if specified, only decodes for that utt')
parser.add_argument('-t', "--timesteps", type=int, default=10, help='how many timesteps to perform reverse diffusion')
parser.add_argument("--stoc", action='store_true', default=False, help="Whether to add stochastic term into decoding")
parser.add_argument("-g", "--guidance", type=float, default=3, help='classifier guidance')
parser.add_argument('-n', '--noise', type=float, default=1.5, help='to multiply sigma')
parser.add_argument('--text', type=str, default=None, help="given text file")
args = parser.parse_args()
model_dir = os.path.join("./logs", args.model)
if not os.path.exists(model_dir):
os.makedirs(model_dir)
config_path = args.config
config_save_path = os.path.join(model_dir, "config.json") # NOTE: which config to load
with open(config_path, "r") as f:
data = f.read()
config = json.loads(data)
hparams = HParams(**config)
hparams.model_dir = model_dir
hparams.train.seed = args.seed
if args.use_control_spk:
if hparams.xvector:
assert args.control_spk_name is not None
else:
assert args.control_spk_id is not None
return hparams, args
def get_hparams_classifier_objective():
parser = argparse.ArgumentParser()
parser.add_argument('-c', '--config', type=str, default="./configs/base.json",
help='JSON file for configuration')
parser.add_argument('-m', '--model', type=str, required=True,
help='Model name')
parser.add_argument('-s', '--seed', type=int, default=1234)
parser.add_argument('--dataset', choices=['train', 'val'], default='val', type=str, help='which dataset to use')
parser.add_argument('--use-control-spk', action='store_true', help='whether to use GT spk or other spk')
parser.add_argument('--control-spk-id', default=None, type=int, help='if use control spk, then which spk')
parser.add_argument("--use-control-emo", action='store_true')
parser.add_argument("--max-utt-num", default=100, type=int, help='maximum utts number to decode')
parser.add_argument("--specify-utt-name", default=None, type=str, help='if specified, only decodes for that utt')
parser.add_argument('--text', type=str, default=None, help="given text file")
parser.add_argument("--feat", type=str, default=None, help='given feats.scp after CMVN')
parser.add_argument("--dur", type=str, default=None, help='Force durations')
args = parser.parse_args()
model_dir = os.path.join("./logs", args.model)
if not os.path.exists(model_dir):
os.makedirs(model_dir)
config_path = args.config
config_save_path = os.path.join(model_dir, "config.json") # NOTE: which config to load
with open(config_path, "r") as f:
data = f.read()
config = json.loads(data)
hparams = HParams(**config)
hparams.model_dir = model_dir
hparams.train.seed = args.seed
if args.use_control_spk:
if hparams.xvector:
assert args.control_spk_name is not None
else:
assert args.control_spk_id is not None
return hparams, args