|
import torch |
|
import torchaudio |
|
import librosa |
|
|
|
mel_basis = {} |
|
hann_window = {} |
|
|
|
def dynamic_range_compression_torch(x, C=1, clip_val=1e-5): |
|
return torch.log(torch.clamp(x, min=clip_val) * C) |
|
|
|
def spectral_normalize_torch(magnitudes): |
|
output = dynamic_range_compression_torch(magnitudes) |
|
return output |
|
|
|
|
|
|
|
def mel_spectrogram(y, n_fft, num_mels, sampling_rate, hop_size, win_size, fmin, fmax, center=False): |
|
if torch.min(y) < -1.: |
|
print('min value is ', torch.min(y)) |
|
if torch.max(y) > 1.: |
|
print('max value is ', torch.max(y)) |
|
|
|
global mel_basis, hann_window |
|
if fmax not in mel_basis: |
|
mel = librosa.filters.mel(sr=sampling_rate, n_fft=n_fft, n_mels=num_mels, fmin=fmin, fmax=fmax) |
|
mel_basis[str(fmax)+'_'+str(y.device)] = torch.from_numpy(mel).float().to(y.device) |
|
hann_window[str(y.device)] = torch.hann_window(win_size).to(y.device) |
|
|
|
y = torch.nn.functional.pad(y.unsqueeze(1), (int((n_fft-hop_size)/2), int((n_fft-hop_size)/2)), mode='reflect') |
|
y = y.squeeze(1) |
|
|
|
spec = torch.stft(y, n_fft, hop_length=hop_size, win_length=win_size, window=hann_window[str(y.device)], |
|
center=center, pad_mode='reflect', normalized=False, onesided=True) |
|
|
|
spec = torch.sqrt(spec.pow(2).sum(-1)+(1e-9)) |
|
|
|
spec = torch.matmul(mel_basis[str(fmax)+'_'+str(y.device)], spec) |
|
spec = spectral_normalize_torch(spec) |
|
|
|
return spec.numpy() |