File size: 3,500 Bytes
ae8e1dd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 |
""" from https://github.com/keithito/tacotron """
import re
from text import cleaners
from text.symbols import symbols
import torch
_symbol_to_id = {s: i for i, s in enumerate(symbols)}
_id_to_symbol = {i: s for i, s in enumerate(symbols)}
_curly_re = re.compile(r'(.*?)\{(.+?)\}(.*)')
def get_arpabet(word, dictionary):
word_arpabet = dictionary.lookup(word)
if word_arpabet is not None:
return "{" + word_arpabet[0] + "}"
else:
return word
def text_to_sequence(text, cleaner_names=["kazakh_cleaners"], dictionary=None):
'''Converts a string of text to a sequence of IDs corresponding to the symbols in the text.
The text can optionally have ARPAbet sequences enclosed in curly braces embedded
in it. For example, "Turn left on {HH AW1 S S T AH0 N} Street."
Args:
text: string to convert to a sequence
cleaner_names: names of the cleaner functions to run the text through
dictionary: arpabet class with arpabet dictionary
Returns:
List of integers corresponding to the symbols in the text
'''
sequence = []
space = _symbols_to_sequence(' ')
# Check for curly braces and treat their contents as ARPAbet:
while len(text):
m = _curly_re.match(text)
if not m:
clean_text = _clean_text(text, cleaner_names)
#clean_text = text
if dictionary is not None:
clean_text = [get_arpabet(w, dictionary) for w in clean_text.split(" ")]
for i in range(len(clean_text)):
t = clean_text[i]
if t.startswith("{"):
sequence += _arpabet_to_sequence(t[1:-1])
else:
sequence += _symbols_to_sequence(t)
sequence += space
else:
sequence += _symbols_to_sequence(clean_text)
break
sequence += _symbols_to_sequence(_clean_text(m.group(1), cleaner_names))
sequence += _arpabet_to_sequence(m.group(2))
text = m.group(3)
# remove trailing space
if dictionary is not None:
sequence = sequence[:-1] if sequence[-1] == space[0] else sequence
return sequence
def sequence_to_text(sequence):
'''Converts a sequence of IDs back to a string'''
result = ''
for symbol_id in sequence:
if symbol_id in _id_to_symbol:
s = _id_to_symbol[symbol_id]
# Enclose ARPAbet back in curly braces:
if len(s) > 1 and s[0] == '@':
s = '{%s}' % s[1:]
result += s
return result.replace('}{', ' ')
def convert_text(string):
text_norm = text_to_sequence(string.lower())
text_norm = torch.IntTensor(text_norm)
text_len = torch.IntTensor([text_norm.size(0)])
text_padded = torch.LongTensor(1, len(text_norm))
text_padded.zero_()
text_padded[0, :text_norm.size(0)] = text_norm
return text_padded, text_len
def _clean_text(text, cleaner_names):
for name in cleaner_names:
cleaner = getattr(cleaners, name)
if not cleaner:
raise Exception('Unknown cleaner: %s' % name)
text = cleaner(text)
return text
def _symbols_to_sequence(symbols):
return [_symbol_to_id[s] for s in symbols if _should_keep_symbol(s)]
def _arpabet_to_sequence(text):
return _symbols_to_sequence(['@' + s for s in text.split()])
def _should_keep_symbol(s):
return s in _symbol_to_id and s != '_' and s != '~'
|