Spaces:
Runtime error
Runtime error
File size: 24,335 Bytes
ae8e1dd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 |
import torch
import torch.nn as nn
from torch import Tensor, BoolTensor
from typing import Optional, Tuple, Iterable
from model.diffusion import SinusoidalPosEmb
from torch.nn.functional import pad
import math
def silu(input):
'''
Applies the Sigmoid Linear Unit (SiLU) function element-wise:
SiLU(x) = x * sigmoid(x)
'''
return input * torch.sigmoid(input) # use torch.sigmoid to make sure that we created the most efficient implemetation based on builtin PyTorch functions
class RelPositionMultiHeadedAttention(nn.Module):
"""Multi-Head Self-Attention layer with relative position encoding.
Paper: https://arxiv.org/abs/1901.02860
Args:
n_head: The number of heads.
d: The number of features.
dropout: Dropout rate.
zero_triu: Whether to zero the upper triangular part of attention matrix.
"""
def __init__(
self, d: int, n_head: int, dropout: float
):
super().__init__()
assert d % n_head == 0
self.c = d // n_head
self.h = n_head
self.linear_q = nn.Linear(d, d)
self.linear_k = nn.Linear(d, d)
self.linear_v = nn.Linear(d, d)
self.linear_out = nn.Linear(d, d)
self.p_attn = None
self.dropout = nn.Dropout(p=dropout)
# linear transformation for positional encoding
self.linear_pos = nn.Linear(d, d, bias=False)
# these two learnable bias are used in matrix c and matrix d
# as described in https://arxiv.org/abs/1901.02860 Section 3.3
self.u = nn.Parameter(torch.Tensor(self.h, self.c))
self.v = nn.Parameter(torch.Tensor(self.h, self.c))
# [H, C]
torch.nn.init.xavier_uniform_(self.u)
torch.nn.init.xavier_uniform_(self.v)
def forward_qkv(self, query, key, value) -> Tuple[Tensor, ...]:
"""Transform query, key and value.
Args:
query (Tensor): [B, S, D].
key (Tensor): [B, T, D].
value (Tensor): [B, T, D].
Returns:
q (Tensor): [B, H, S, C].
k (Tensor): [B, H, T, C].
v (Tensor): [B, H, T, C].
"""
n_batch = query.size(0)
q = self.linear_q(query).view(n_batch, -1, self.h, self.c)
k = self.linear_k(key).view(n_batch, -1, self.h, self.c)
v = self.linear_v(value).view(n_batch, -1, self.h, self.c)
q = q.transpose(1, 2)
k = k.transpose(1, 2)
v = v.transpose(1, 2)
return q, k, v
def forward_attention(self, v, scores, mask, causal=False) -> Tensor:
"""Compute attention context vector.
Args:
v (Tensor): [B, H, T, C].
scores (Tensor): [B, H, S, T].
mask (BoolTensor): [B, T], True values are masked from scores.
Returns:
result (Tensor): [B, S, D]. Attention result weighted by the score.
"""
n_batch, H, S, T = scores.shape
if mask is not None:
scores = scores.masked_fill(
mask.unsqueeze(1).unsqueeze(2).to(bool),
float("-inf"), # [B, H, S, T]
)
if causal:
k_grid = torch.arange(0, S, dtype=torch.int32, device=scores.device)
v_grid = torch.arange(0, T, dtype=torch.int32, device=scores.device)
kk, vv = torch.meshgrid(k_grid, v_grid, indexing="ij")
causal_mask = vv > kk
scores = scores.masked_fill(
causal_mask.view(1, 1, S, T), float("-inf")
)
p_attn = self.p_attn = torch.softmax(scores, dim=-1) # [B, H, S, T]
p_attn = self.dropout(p_attn) # [B, H, S, T]
x = torch.matmul(p_attn, v) # [B, H, S, C]
x = (
x.transpose(1, 2).contiguous().view(n_batch, -1, self.h * self.c)
) # [B, S, D]
return self.linear_out(x) # [B, S, D]
def rel_shift(self, x):
"""Converting (..., i, i - j) matrix into (..., i, j) matrix.
Args:
x (Tensor): [B, H, S, 2S-1].
Returns:
x (Tensor): [B, H, S, S].
Example: Take S = 2 for example, larger values work similarly.
x = [
[(0, -1), (0, 0), (0, 1)],
[(1, 0), (1, 1), (1, 2)]
]
x_padded = [
[(x, x), (0, -1), (0, 0), (0, 1)],
[(x, x), (1, 0), (1, 1), (1, 2)]]
]
x_padded = [
[(x, x), (0, -1)],
[(0, 0), (0, 1)],
[(x, x), (1, 0)],
[(1, 1), (1, 2)]
]
x = [
[(0, 0), (0, 1)],
[(1, 0), (1, 1)]
]
"""
B, H, S, _ = x.shape
zero_pad = torch.zeros((B, H, S, 1), device=x.device, dtype=x.dtype)
# [B, H, S, 1]
x_padded = torch.cat([zero_pad, x], dim=-1)
# [B, H, S, 2S]
x_padded = x_padded.view(B, H, 2 * S, S)
# [B, H, 2S, S]
x = x_padded[:, :, 1:].view_as(x)[:, :, :, :S]
# only keep the positions from 0 to S
# [B, H, 2S-1, S] <view> [B, H, S, 2S - 1] <truncate in dim -1> [B, H, S, S]
return x
def forward(
self, query, key, value, pos_emb, mask=None, causal=False):
"""Compute self-attention with relative positional embedding.
Args:
query (Tensor): [B, S, D].
key (Tensor): [B, S, D].
value (Tensor): [B, S, D].
pos_emb (Tensor): [1/B, 2S-1, D]. Positional embedding.
mask (BoolTensor): [B, S], True for masked.
causal (bool): True for applying causal mask.
Returns:
output (Tensor): [B, S, D].
"""
# Splitting Q, K, V:
q, k, v = self.forward_qkv(query, key, value)
# [B, H, S, C], [B, H, S, C], [B, H, S, C]
# Adding per head & channel biases to the query vectors:
q_u = q + self.u.unsqueeze(1)
q_v = q + self.v.unsqueeze(1)
# [B, H, S, C]
# Splitting relative positional coding:
n_batch_pos = pos_emb.size(0) # [1/B, 2S-1, D]
p = self.linear_pos(pos_emb).view(n_batch_pos, -1, self.h, self.c)
# [1/B, 2S-1, H, C]
p = p.transpose(1, 2) # [1/B, H, 2S-1, C].
# Compute query, key similarity:
matrix_ac = torch.matmul(q_u, k.transpose(-2, -1))
# [B, H, S, C] x [B, H, C, S] -> [B, H, S, S]
matrix_bd = torch.matmul(q_v, p.transpose(-2, -1))
# [B, H, S, C] x [1/B, H, C, 2S-1] -> [B, H, S, 2S-1]
matrix_bd = self.rel_shift(matrix_bd)
scores = (matrix_ac + matrix_bd) / math.sqrt(self.c)
# [B, H, S, S]
return self.forward_attention(v, scores, mask, causal) # [B, S, D]
class ConditionalBiasScale(nn.Module):
def __init__(self, channels: int, cond_channels: int):
super().__init__()
self.scale_transform = nn.Linear(
cond_channels, channels, bias=True
)
self.bias_transform = nn.Linear(
cond_channels, channels, bias=True
)
self.init_parameters()
def init_parameters(self):
torch.nn.init.constant_(self.scale_transform.weight, 0.0)
torch.nn.init.constant_(self.scale_transform.bias, 1.0)
torch.nn.init.constant_(self.bias_transform.weight, 0.0)
torch.nn.init.constant_(self.bias_transform.bias, 0.0)
def forward(self, x: Tensor, cond: Tensor) -> Tensor:
"""Applying conditional bias and scale.
Args:
x (Tensor): [..., channels].
cond (Tensor): [..., cond_channels].
Returns:
y (Tensor): [..., channels].
"""
a = self.scale_transform.forward(cond)
b = self.bias_transform.forward(cond)
return x * a + b
class FeedForwardModule(torch.nn.Module):
"""Positionwise feed forward layer used in conformer"""
def __init__(
self, d_in: int, d_hidden: int,
dropout: float, bias: bool = True, d_cond: int = 0
):
"""
Args:
d_in (int): Input feature dimension.
d_hidden (int): Hidden unit dimension.
dropout (float): dropout value for first Linear Layer.
bias (bool): If linear layers should have bias.
d_cond (int, optional): The channels of conditional tensor.
"""
super(FeedForwardModule, self).__init__()
self.layer_norm = torch.nn.LayerNorm(d_in)
if d_cond > 0:
self.cond_layer = ConditionalBiasScale(d_in, d_cond)
self.w_1 = torch.nn.Linear(d_in, d_hidden, bias=bias)
self.w_2 = torch.nn.Linear(d_hidden, d_in, bias=bias)
self.dropout = torch.nn.Dropout(dropout)
def forward(self, x: Tensor, cond: Optional[Tensor] = None) -> Tensor:
"""
Args:
x (Tensor): [..., D].
Returns:
y (Tensor): [..., D].
cond (Tensor): [..., D_cond]
"""
x = self.layer_norm(x)
if cond is not None:
x = self.cond_layer.forward(x, cond)
x = self.w_1(x)
x = silu(x)
x = self.dropout(x)
x = self.w_2(x)
return self.dropout(x)
class RelPositionalEncoding(nn.Module):
"""Relative positional encoding cache.
Args:
d_model: Embedding dimension.
dropout_rate: Dropout rate.
max_len: Default maximum input length.
"""
def __init__(self, max_len: int, d_model: int):
super().__init__()
self.d_model = d_model
self.cached_code = None
self.l = 0
self.gen_code(torch.tensor(0.0).expand(1, max_len))
def gen_code(self, x: Tensor):
"""Generate positional encoding with a reference tensor x.
Args:
x (Tensor): [B, L, ...], we extract the device, length, and dtype from it.
Effects:
self.cached_code (Tensor): [1, >=(2L-1), D].
"""
l = x.size(1)
if self.l >= l:
if self.cached_code.dtype != x.dtype or self.cached_code.device != x.device:
self.cached_code = self.cached_code.to(dtype=x.dtype, device=x.device)
return
# Suppose `i` means to the position of query vecotr and `j` means the
# position of key vector. We use position relative positions when keys
# are to the left (i>j) and negative relative positions otherwise (i<j).
code_pos = torch.zeros(l, self.d_model) # [L, D]
code_neg = torch.zeros(l, self.d_model) # [L, D]
pos = torch.arange(0, l, dtype=torch.float32).unsqueeze(1) # [L, 1]
decay = torch.exp(
torch.arange(0, self.d_model, 2, dtype=torch.float32)
* -(math.log(10000.0) / self.d_model)
) # [D // 2]
code_pos[:, 0::2] = torch.sin(pos * decay)
code_pos[:, 1::2] = torch.cos(pos * decay)
code_neg[:, 0::2] = torch.sin(-1 * pos * decay)
code_neg[:, 1::2] = torch.cos(-1 * pos * decay)
# Reserve the order of positive indices and concat both positive and
# negative indices. This is used to support the shifting trick
# as in https://arxiv.org/abs/1901.02860
code_pos = torch.flip(code_pos, [0]).unsqueeze(0) # [1, L, D]
code_neg = code_neg[1:].unsqueeze(0) # [1, L - 1, D]
code = torch.cat([code_pos, code_neg], dim=1) # [1, 2L - 1, D]
self.cached_code = code.to(device=x.device, dtype=x.dtype)
self.l = l
def forward(self, x: Tensor) -> Tensor:
"""Get positional encoding of appropriate shape given a reference Tensor.
Args:
x (Tensor): [B, L, ...].
Returns:
y (Tensor): [1, 2L-1, D].
"""
self.gen_code(x)
l = x.size(1)
pos_emb = self.cached_code[
:, self.l - l: self.l + l - 1,
]
return pos_emb
class ConformerBlock(torch.nn.Module):
"""Conformer block based on https://arxiv.org/abs/2005.08100."""
def __init__(
self, d: int, d_hidden: int,
attention_heads: int, dropout: float,
depthwise_conv_kernel_size: int = 7,
causal: bool = False, d_cond: int = 0
):
"""
Args:
d (int): Block input output channel number.
d_hidden (int): FFN layer dimension.
attention_heads (int): Number of attention heads.
dropout (float): dropout value.
depthwise_conv_kernel_size (int): Size of kernel in depthwise conv.
d_cond (int, optional): The channels of conditional tensor.
"""
super(ConformerBlock, self).__init__()
self.causal = causal
self.ffn1 = FeedForwardModule(
d, d_hidden, dropout, bias=True, d_cond=d_cond
)
self.self_attn_layer_norm = torch.nn.LayerNorm(d)
if d_cond > 0:
self.cond_layer = ConditionalBiasScale(d, d_cond)
self.self_attn = RelPositionMultiHeadedAttention(
d, attention_heads, dropout=dropout
)
self.self_attn_dropout = torch.nn.Dropout(dropout)
self.conv_module = ConvolutionModule(
d_in=d, d_hidden=d,
depthwise_kernel_size=depthwise_conv_kernel_size,
dropout=dropout, d_cond=d_cond
)
self.ffn2 = FeedForwardModule(
d, d_hidden, dropout, bias=True, d_cond=d_cond
)
self.final_layer_norm = torch.nn.LayerNorm(d)
def forward(
self, x: Tensor, mask: BoolTensor, pos_emb: Tensor,
cond: Optional[Tensor] = None
) -> Tensor:
"""
Args:
x (Tensor): [B, T, D_in].
mask (BoolTensor): [B, T], True for masked.
pos_emb (Tensor): [1 or B, 2T-1, D].
cond (Tensor, optional): [B, ?, D_cond].
Returns:
y (Tensor): [B, T, D_in].
"""
y = x
x = self.ffn1(x) * 0.5 + y
y = x
# [B, T, D_in]
x = self.self_attn_layer_norm(x)
if cond is not None:
x = self.cond_layer.forward(x, cond)
x = self.self_attn.forward(
query=x, key=x, value=x,
pos_emb=pos_emb,
mask=mask, causal=self.causal
)
x = self.self_attn_dropout(x) + y
y = x
# [B, T, D_in]
x = self.conv_module.forward(x, mask) + y
y = x
# [B, T, D_in]
x = self.ffn2(x) * 0.5 + y
x = self.final_layer_norm(x)
x.masked_fill(mask.unsqueeze(-1), 0.0)
return x
class ConvolutionModule(torch.nn.Module):
"""Convolution Block inside a Conformer Block."""
def __init__(
self, d_in: int, d_hidden: int,
depthwise_kernel_size: int,
dropout: float, bias: bool = False,
causal: bool = False, d_cond: int = 0
):
"""
Args:
d_in (int): Embedding dimension.
d_hidden (int): Number of channels in depthwise conv layers.
depthwise_kernel_size (int): Depthwise conv layer kernel size.
dropout (float): dropout value.
bias (bool): If bias should be added to conv layers.
conditional (bool): Whether to use conditional LayerNorm.
"""
super(ConvolutionModule, self).__init__()
assert (depthwise_kernel_size - 1) % 2 == 0, "kernel_size should be odd"
self.causal = causal
self.causal_padding = (depthwise_kernel_size - 1, 0)
self.layer_norm = torch.nn.LayerNorm(d_in)
# Optional conditional LayerNorm:
self.d_cond = d_cond
if d_cond > 0:
self.cond_layer = ConditionalBiasScale(d_in, d_cond)
self.pointwise_conv1 = torch.nn.Conv1d(
d_in, 2 * d_hidden,
kernel_size=1,
stride=1, padding=0,
bias=bias
)
self.glu = torch.nn.GLU(dim=1)
self.depthwise_conv = torch.nn.Conv1d(
d_hidden, d_hidden,
kernel_size=depthwise_kernel_size,
stride=1,
padding=(depthwise_kernel_size - 1) // 2 if not causal else 0,
groups=d_hidden, bias=bias
)
self.pointwise_conv2 = torch.nn.Conv1d(
d_hidden, d_in,
kernel_size=1,
stride=1, padding=0,
bias=bias,
)
self.dropout = torch.nn.Dropout(dropout)
def forward(self, x: Tensor, mask: BoolTensor, cond: Optional[Tensor] = None) -> Tensor:
"""
Args:
x (Tensor): [B, T, D_in].
mask (BoolTensor): [B, T], True for masked.
cond (Tensor): [B, T, D_cond].
Returns:
y (Tensor): [B, T, D_in].
"""
x = self.layer_norm(x)
if cond is not None:
x = self.cond_layer.forward(x, cond)
x = x.transpose(-1, -2) # [B, D_in, T]
x = self.pointwise_conv1(x) # [B, 2C, T]
x = self.glu(x) # [B, C, T]
# Take care of masking the input tensor:
if mask is not None:
x = x.masked_fill(mask.unsqueeze(1), 0.0)
# 1D Depthwise Conv
if self.causal: # Causal padding
x = pad(x, self.causal_padding)
x = self.depthwise_conv(x)
# FIXME: BatchNorm should not be used in variable length training.
x = silu(x) # [B, C, T]
if mask is not None:
x = x.masked_fill(mask.unsqueeze(1), 0.0)
x = self.pointwise_conv2(x)
x = self.dropout(x)
return x.transpose(-1, -2) # [B, T, D_in]
class Conformer(torch.nn.Module):
def __init__(
self,
d: int,
d_hidden: int,
n_heads: int,
n_layers: int,
dropout: float,
depthwise_conv_kernel_size: int,
causal: bool = False,
d_cond: int = 0
):
super().__init__()
self.pos_encoding = RelPositionalEncoding(1024, d)
self.causal = causal
self.blocks = torch.nn.ModuleList(
[
ConformerBlock(
d=d,
d_hidden=d_hidden,
attention_heads=n_heads,
dropout=dropout,
depthwise_conv_kernel_size=depthwise_conv_kernel_size,
causal=causal,
d_cond=d_cond
)
for _ in range(n_layers)
]
) # type: Iterable[ConformerBlock]
def forward(
self, x: Tensor, mask: BoolTensor, cond: Tensor = None
) -> Tensor:
"""Conformer forwarding.
Args:
x (Tensor): [B, T, D].
mask (BoolTensor): [B, T], with True for masked.
cond (Tensor, optional): [B, T, D_cond].
Returns:
y (Tensor): [B, T, D]
"""
pos_emb = self.pos_encoding(x) # [1, 2T-1, D]
for block in self.blocks:
x = block.forward(x, mask, pos_emb, cond)
return x
class CNNBlock(nn.Module):
def __init__(self, in_dim, out_dim, dropout, cond_dim, kernel_size, stride):
super(CNNBlock, self).__init__()
self.layers = nn.Sequential(
nn.Conv1d(in_dim, out_dim, kernel_size, stride),
nn.ReLU(),
nn.BatchNorm1d(out_dim,),
nn.Dropout(p=dropout)
)
def forward(self, inp):
out = self.layers(inp)
return out
class CNNClassifier(nn.Module):
def __init__(self, in_dim, d_decoder, decoder_dropout, cond_dim):
super(CNNClassifier, self).__init__()
self.cnn = nn.Sequential(
CNNBlock(in_dim, d_decoder, decoder_dropout, cond_dim, 8, 4),
CNNBlock(d_decoder, d_decoder, decoder_dropout, cond_dim, 8, 4),
CNNBlock(d_decoder, d_decoder, decoder_dropout, cond_dim, 4, 2),
CNNBlock(d_decoder, d_decoder, decoder_dropout, cond_dim, 4, 2),
) # receptive field is 180, frame shift is 64
self.cond_layer = nn.Sequential(
nn.Linear(cond_dim, in_dim),
nn.LeakyReLU(),
nn.Linear(in_dim, in_dim)
)
def forward(self, inp, mask, cond):
inp = inp.transpose(-1, -2)
cond = cond.transpose(-1, -2)
inp.masked_fill_(mask.unsqueeze(1), 0.0)
cond = self.cond_layer(cond.transpose(-1, -2)).transpose(-1, -2)
cond.masked_fill_(mask.unsqueeze(1), 0.0)
inp = inp + cond
return self.cnn(inp)
class CNNClassifierWithTime(nn.Module):
def __init__(self, in_dim, d_decoder, decoder_dropout, cond_dim, time_emb_dim=512):
super(CNNClassifierWithTime, self).__init__()
self.cnn = nn.Sequential(
CNNBlock(in_dim, d_decoder, decoder_dropout, cond_dim, 8, 4),
CNNBlock(d_decoder, d_decoder, decoder_dropout, cond_dim, 8, 4),
CNNBlock(d_decoder, d_decoder, decoder_dropout, cond_dim, 4, 2),
CNNBlock(d_decoder, d_decoder, decoder_dropout, cond_dim, 4, 2),
) # receptive field is 180, frame shift is 64
self.cond_layer = nn.Sequential(
nn.Linear(cond_dim, in_dim),
nn.LeakyReLU(),
nn.Linear(in_dim, in_dim)
)
self.time_emb = SinusoidalPosEmb(time_emb_dim)
self.time_layer = nn.Sequential(
nn.Linear(time_emb_dim, in_dim),
nn.LeakyReLU(),
nn.Linear(in_dim, in_dim)
)
def forward(self, inp, mask, cond, t):
time_emb = self.time_emb(t) # [B, T]
time_emb = self.time_layer(time_emb.unsqueeze(1)).transpose(-1, -2)
inp = inp.transpose(-1, -2)
cond = cond.transpose(-1, -2)
inp.masked_fill_(mask.unsqueeze(1), 0.0)
cond = self.cond_layer(cond.transpose(-1, -2)).transpose(-1, -2)
cond.masked_fill_(mask.unsqueeze(1), 0.0)
inp = inp + cond + time_emb
return self.cnn(inp)
class SpecClassifier(nn.Module):
def __init__(self, in_dim, d_decoder, h_decoder,
l_decoder, decoder_dropout,
k_decoder, n_class, cond_dim, model_type='conformer'):
super(SpecClassifier, self).__init__()
self.model_type = model_type
self.prenet = nn.Sequential(
nn.Linear(in_features=in_dim, out_features=d_decoder)
)
if model_type == 'conformer':
self.conformer = Conformer(d=d_decoder, d_hidden=d_decoder, n_heads=h_decoder,
n_layers=l_decoder, dropout=decoder_dropout,
depthwise_conv_kernel_size=k_decoder, d_cond=cond_dim)
elif model_type == 'CNN':
self.conformer = CNNClassifier(in_dim=d_decoder, d_decoder=d_decoder,
decoder_dropout=decoder_dropout, cond_dim=cond_dim)
elif model_type == 'CNN-with-time':
self.conformer = CNNClassifierWithTime(in_dim=d_decoder, d_decoder=d_decoder,
decoder_dropout=decoder_dropout, cond_dim=cond_dim, time_emb_dim=256)
self.classifier = nn.Linear(d_decoder, n_class)
def forward(self, noisy_mel, condition, mask, **kwargs):
"""
Args:
noisy_mel: [B, T, D]
condition: [B, T, D]
mask: [B, T] with True for un-masked (real-values)
Returns:
classification logits (un-softmaxed)
"""
# print(noisy_mel.shape)
noisy_mel = noisy_mel.masked_fill(~mask.unsqueeze(-1), 0.0)
# print(self.prenet, noisy_mel.shape)
hiddens = self.prenet(noisy_mel)
if self.model_type == 'CNN-with-time':
hiddens = self.conformer.forward(hiddens, ~mask, condition, kwargs['t'])
else:
hiddens = self.conformer.forward(hiddens, ~mask, condition) # [B, T, D]
if self.model_type == 'conformer':
averaged_hiddens = torch.mean(hiddens, dim=1) # [B, D]
logits = self.classifier(averaged_hiddens)
return logits
elif self.model_type == 'CNN' or self.model_type == 'CNN-with-time':
hiddens = hiddens.transpose(-1, -2)
return self.classifier(hiddens) # [B, T', C]
@property
def nparams(self):
return sum([p.numel() for p in self.parameters()])
|