Spaces:
Sleeping
Sleeping
N.Achyuth Reddy
commited on
Commit
Β·
b453ff2
1
Parent(s):
950ee57
Update app.py
Browse files
app.py
CHANGED
@@ -4,77 +4,57 @@ from st_audiorec import st_audiorec
|
|
4 |
from gtts import gTTS
|
5 |
import os
|
6 |
|
7 |
-
|
8 |
-
|
9 |
# Constants
|
10 |
TITLE = "AgriTure"
|
11 |
DESCRIPTION = """
|
12 |
----
|
13 |
-
This Project demonstrates a model fine-tuned by Achyuth. This Model is named as "
|
14 |
Hope this will be a Successful Project!!!
|
15 |
~Achyuth
|
16 |
----
|
17 |
"""
|
18 |
|
19 |
# Initialize client
|
20 |
-
|
21 |
-
|
22 |
-
with st.sidebar:
|
23 |
-
system_promptSide = st.text_input("Optional system prompt:")
|
24 |
-
temperatureSide = st.slider("Temperature", min_value=0.0, max_value=1.0, value=0.9, step=0.05)
|
25 |
-
max_new_tokensSide = st.slider("Max new tokens", min_value=0.0, max_value=4096.0, value=4096.0, step=64.0)
|
26 |
-
ToppSide = st.slider("Top-p (nucleus sampling)", min_value=0.0, max_value=1.0, value=0.6, step=0.05)
|
27 |
-
RepetitionpenaltySide = st.slider("Repetition penalty", min_value=0.0, max_value=2.0, value=1.2, step=0.05)
|
28 |
-
|
29 |
whisper_client = Client("https://sanchit-gandhi-whisper-large-v2.hf.space/")
|
30 |
|
|
|
|
|
|
|
|
|
|
|
31 |
|
|
|
32 |
def transcribe(wav_path):
|
33 |
-
|
34 |
return whisper_client.predict(
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
)
|
39 |
|
40 |
# Prediction function
|
41 |
-
def predict(message, system_prompt='Your name is
|
42 |
with st.status("Starting client"):
|
43 |
client = Client("https://huggingface-projects-llama-2-7b-chat.hf.space/")
|
44 |
st.write("Requesting Audio Transcriber")
|
45 |
with st.status("Requesting AgriTure v1"):
|
46 |
st.write("Requesting API")
|
47 |
response = client.predict(
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
)
|
57 |
st.write("Done")
|
58 |
return response
|
59 |
-
|
60 |
-
|
61 |
-
# Function to convert text to speech
|
62 |
-
def text_to_speech(text, language='en', filename='output.mp3'):
|
63 |
-
tts = gTTS(text=text, lang=language, slow=False)
|
64 |
-
tts.save(filename)
|
65 |
-
os.system(f'start {filename}')
|
66 |
-
# Convert response to speech
|
67 |
-
response=response
|
68 |
-
text_to_speech(response)
|
69 |
-
|
70 |
# Streamlit UI
|
71 |
st.title(TITLE)
|
72 |
st.write(DESCRIPTION)
|
73 |
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
if "messages" not in st.session_state:
|
79 |
st.session_state.messages = []
|
80 |
|
@@ -86,36 +66,50 @@ for message in st.session_state.messages:
|
|
86 |
textinput = st.chat_input("Ask AgriTure anything...")
|
87 |
wav_audio_data = st_audiorec()
|
88 |
|
89 |
-
if wav_audio_data
|
90 |
with st.status("Transcribing audio..."):
|
91 |
# save audio
|
92 |
with open("audio.wav", "wb") as f:
|
93 |
f.write(wav_audio_data)
|
94 |
prompt = transcribe("audio.wav")
|
95 |
-
|
96 |
st.write("Transcribed Given Audio β")
|
97 |
-
|
98 |
-
st.chat_message("human",avatar
|
99 |
st.session_state.messages.append({"role": "human", "content": prompt})
|
100 |
|
101 |
# transcribe audio
|
102 |
-
response = predict(message=
|
103 |
|
104 |
-
with st.chat_message("assistant", avatar='
|
105 |
st.markdown(response)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
106 |
# Add assistant response to chat history
|
107 |
st.session_state.messages.append({"role": "assistant", "content": response})
|
108 |
|
109 |
# React to user input
|
110 |
if prompt := textinput:
|
111 |
# Display user message in chat message container
|
112 |
-
st.chat_message("human",avatar
|
113 |
# Add user message to chat history
|
114 |
st.session_state.messages.append({"role": "human", "content": prompt})
|
115 |
|
116 |
-
response = predict(message=prompt)
|
|
|
|
|
|
|
|
|
117 |
# Display assistant response in chat message container
|
118 |
-
with st.chat_message("assistant", avatar='
|
119 |
st.markdown(response)
|
|
|
|
|
|
|
|
|
120 |
# Add assistant response to chat history
|
121 |
st.session_state.messages.append({"role": "assistant", "content": response})
|
|
|
4 |
from gtts import gTTS
|
5 |
import os
|
6 |
|
|
|
|
|
7 |
# Constants
|
8 |
TITLE = "AgriTure"
|
9 |
DESCRIPTION = """
|
10 |
----
|
11 |
+
This Project demonstrates a model fine-tuned by Achyuth. This Model is named as "AgriaTure". This Model helps the farmers and scientists to develop the art of agriculture and farming.
|
12 |
Hope this will be a Successful Project!!!
|
13 |
~Achyuth
|
14 |
----
|
15 |
"""
|
16 |
|
17 |
# Initialize client
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
whisper_client = Client("https://sanchit-gandhi-whisper-large-v2.hf.space/")
|
19 |
|
20 |
+
# Function to convert text to speech using gTTS
|
21 |
+
def text_to_speech(text, lang='en'):
|
22 |
+
tts = gTTS(text=text, lang=lang, slow=False)
|
23 |
+
tts.save("response.mp3")
|
24 |
+
return "response.mp3"
|
25 |
|
26 |
+
# Function to transcribe audio
|
27 |
def transcribe(wav_path):
|
|
|
28 |
return whisper_client.predict(
|
29 |
+
wav_path,
|
30 |
+
"transcribe",
|
31 |
+
api_name="/predict"
|
32 |
)
|
33 |
|
34 |
# Prediction function
|
35 |
+
def predict(message, system_prompt='Your name is AgriaTure...', temperature=0.7, max_new_tokens=4096, Topp=0.5, Repetitionpenalty=1.2):
|
36 |
with st.status("Starting client"):
|
37 |
client = Client("https://huggingface-projects-llama-2-7b-chat.hf.space/")
|
38 |
st.write("Requesting Audio Transcriber")
|
39 |
with st.status("Requesting AgriTure v1"):
|
40 |
st.write("Requesting API")
|
41 |
response = client.predict(
|
42 |
+
message,
|
43 |
+
system_prompt,
|
44 |
+
max_new_tokens,
|
45 |
+
temperature,
|
46 |
+
Topp,
|
47 |
+
500,
|
48 |
+
Repetitionpenalty,
|
49 |
+
api_name="/chat"
|
50 |
)
|
51 |
st.write("Done")
|
52 |
return response
|
53 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
54 |
# Streamlit UI
|
55 |
st.title(TITLE)
|
56 |
st.write(DESCRIPTION)
|
57 |
|
|
|
|
|
|
|
|
|
58 |
if "messages" not in st.session_state:
|
59 |
st.session_state.messages = []
|
60 |
|
|
|
66 |
textinput = st.chat_input("Ask AgriTure anything...")
|
67 |
wav_audio_data = st_audiorec()
|
68 |
|
69 |
+
if wav_audio_data is not None:
|
70 |
with st.status("Transcribing audio..."):
|
71 |
# save audio
|
72 |
with open("audio.wav", "wb") as f:
|
73 |
f.write(wav_audio_data)
|
74 |
prompt = transcribe("audio.wav")
|
|
|
75 |
st.write("Transcribed Given Audio β")
|
76 |
+
|
77 |
+
st.chat_message("human", avatar="πΏ").markdown(prompt)
|
78 |
st.session_state.messages.append({"role": "human", "content": prompt})
|
79 |
|
80 |
# transcribe audio
|
81 |
+
response = predict(message=prompt)
|
82 |
|
83 |
+
with st.chat_message("assistant", avatar='πΏ'):
|
84 |
st.markdown(response)
|
85 |
+
|
86 |
+
# Convert AI response to speech
|
87 |
+
speech_file = text_to_speech(response)
|
88 |
+
|
89 |
+
# Play the generated speech
|
90 |
+
st.audio(speech_file, format="audio/mp3")
|
91 |
+
|
92 |
# Add assistant response to chat history
|
93 |
st.session_state.messages.append({"role": "assistant", "content": response})
|
94 |
|
95 |
# React to user input
|
96 |
if prompt := textinput:
|
97 |
# Display user message in chat message container
|
98 |
+
st.chat_message("human", avatar="πΏ").markdown(prompt)
|
99 |
# Add user message to chat history
|
100 |
st.session_state.messages.append({"role": "human", "content": prompt})
|
101 |
|
102 |
+
response = predict(message=prompt)
|
103 |
+
|
104 |
+
# Convert AI response to speech
|
105 |
+
speech_file = text_to_speech(response)
|
106 |
+
|
107 |
# Display assistant response in chat message container
|
108 |
+
with st.chat_message("assistant", avatar='πΏ'):
|
109 |
st.markdown(response)
|
110 |
+
|
111 |
+
# Play the generated speech
|
112 |
+
st.audio(speech_file, format="audio/mp3")
|
113 |
+
|
114 |
# Add assistant response to chat history
|
115 |
st.session_state.messages.append({"role": "assistant", "content": response})
|