FlawlessAI / app.py
N.Achyuth Reddy
Update app.py
b151e56
raw
history blame
4.06 kB
import streamlit as st
from gradio_client import Client
from gtts import gTTS
import os
# Constants
TITLE = "AgriTure"
DESCRIPTION = """
----
This Project demonstrates a model fine-tuned by Achyuth. This Model is named as "AgriTure". This Model helps the farmers and scientists to develop the art of agriculture and farming.
Hope this will be a Successful Project!!!
~Achyuth
----
"""
# Initialize client
with st.sidebar:
system_promptSide = st.text_input("Optional system prompt:")
temperatureSide = st.slider("Temperature", min_value=0.0, max_value=1.0, value=0.9, step=0.05)
max_new_tokensSide = st.slider("Max new tokens", min_value=0.0, max_value=4096.0, value=4096.0, step=64.0)
ToppSide = st.slider("Top-p (nucleus sampling)", min_value=0.0, max_value=1.0, value=0.6, step=0.05)
RepetitionpenaltySide = st.slider("Repetition penalty", min_value=0.0, max_value=2.0, value=1.2, step=0.05)
whisper_client = Client("https://sanchit-gandhi-whisper-large-v2.hf.space/")
def transcribe(wav_path):
return whisper_client.predict(
wav_path,
"transcribe",
api_name="/predict"
)
# Initialize session state
if "messages" not in st.session_state:
st.session_state.messages = []
# Prediction function
def predict(message, system_prompt='Your name is OpenGPT. You are developed by Achyuth. You need to mostly focus on giving information about future agriculture and advanced farming. Empower yourself farming future with cutting-edge technology and sustainable practices. You need to cultivate a greener and more productive. Your developer is studying in The Hyderabad Public School Kadapa.', temperature=0.7, max_new_tokens=4096, Topp=0.5, Repetitionpenalty=1.2):
with st.status("Starting client"):
client = Client("https://huggingface-projects-llama-2-7b-chat.hf.space/")
st.write("Requesting Audio Transcriber")
with st.status("Requesting AgriTure v1"):
st.write("Requesting API")
response = client.predict(
message,
system_prompt,
max_new_tokens,
temperature,
Topp,
500,
Repetitionpenalty,
api_name="/chat"
)
st.write("Done")
return response
# Function to convert text to speech
def text_to_speech(text, language='en', filename='output.mp3'):
tts = gTTS(text=text, lang=language, slow=False)
tts.save(filename)
os.system(f'start {filename}')
# Streamlit UI
st.title(TITLE)
st.write(DESCRIPTION)
# Display chat messages from history on app rerun
for message in st.session_state.messages:
with st.chat_message(message["role"], avatar=("πŸ§‘β€πŸ’»" if message["role"] == 'human' else 'πŸ¦™')):
st.markdown(message["content"])
textinput = st.chat_input("Ask AgriTure anything...")
# Assume st_audiorec is a simplified audio recorder function
wav_audio_data = st.audio_recorder()
if wav_audio_data is not None:
with st.status("Transcribing audio..."):
with open("audio.wav", "wb") as f:
f.write(wav_audio_data)
prompt = transcribe("audio.wav")
st.write("Transcribed Given Audio βœ”")
st.chat_message("human", avatar="πŸ§‘β€πŸ’»").markdown(prompt)
st.session_state.messages.append({"role": "human", "content": prompt})
# transcribe audio
response = predict(message=prompt)
with st.chat_message("assistant", avatar='πŸ¦™'):
st.markdown(response)
st.session_state.messages.append({"role": "assistant", "content": response})
# Convert response to audio
text_to_speech(response)
# React to user input
if prompt := textinput:
st.chat_message("human", avatar="πŸ’¬: ").markdown(prompt)
st.session_state.messages.append({"role": "human", "content": prompt})
response = predict(message=prompt)
with st.chat_message("assistant", avatar='πŸ¦™'):
st.markdown(response)
st.session_state.messages.append({"role": "assistant", "content": response})
# Convert response to audio
text_to_speech(response)