Spaces:
Sleeping
Sleeping
File size: 2,328 Bytes
86b946a 2e97054 86b946a 019cdf0 2e97054 019cdf0 86b946a 883b37e 31ed649 883b37e 6e9959e 883b37e e0d541d 883b37e e0d541d 883b37e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 |
import streamlit as st
from gradio_client import Client
# Constants
TITLE = "Llama2 70B Chatbot"
DESCRIPTION = """
This Space demonstrates model [Llama-2-70b-chat-hf](https://huggingface.co/meta-llama/Llama-2-70b-chat-hf) by Meta,
a Llama 2 model with 70B parameters fine-tuned for chat instructions.
"""
# Initialize client
client = Client("https://ysharma-explore-llamav2-with-tgi.hf.space/")
with st.sidebar:
system_promptSide = st.text_input("Optional system prompt:")
temperatureSide = st.slider("Temperature", min_value=0.0, max_value=1.0, value=0.9, step=0.05)
max_new_tokensSide = st.slider("Max new tokens", min_value=0, max_value=4096, value=4096, step=32)
# Prediction function
def predict(message, system_prompt="", temperature=0.9, max_new_tokens=4096):
with st.status("Requesting LLama-2"):
st.write("Requesting API")
response = client.predict(
message, # str in 'Message' Textbox component
system_promptSide, # str in 'Optional system prompt' Textbox component
temperatureSide, # int | float (numeric value between 0.0 and 1.0)
max_new_tokensSide, # int | float (numeric value between 0 and 4096)
0.3, # int | float (numeric value between 0.0 and 1)
1, # int | float (numeric value between 1.0 and 2.0)
api_name="/chat"
)
st.write("Done")
return response
# Streamlit UI
st.title(TITLE)
st.write(DESCRIPTION)
if "messages" not in st.session_state:
st.session_state.messages = []
# Display chat messages from history on app rerun
for message in st.session_state.messages:
with st.chat_message(message["role"]):
st.markdown(message["content"])
# React to user input
if prompt := st.chat_input("Ask LLama-2-70b anything..."):
# Display user message in chat message container
st.chat_message("human",avatar = "🧑💻").markdown(prompt)
# Add user message to chat history
st.session_state.messages.append({"role": "human", "content": prompt})
response = predict(prompt)
# Display assistant response in chat message container
with st.chat_message("assistant", avatar='🦙'):
st.markdown(response)
# Add assistant response to chat history
st.session_state.messages.append({"role": "assistant", "content": response}) |