Spaces:
Sleeping
Sleeping
File size: 26,331 Bytes
0e73bb7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 |
import streamlit as st
import pandas as pd
import joblib
from sklearn.linear_model import LogisticRegression
from sklearn.ensemble import RandomForestClassifier
from sklearn.tree import DecisionTreeClassifier
import time
import numpy as np
import streamlit as st
# Using Markdown with custom styles to center the title and add style
st.markdown("""
<style>
.title {
font-size: 40px;
font-weight: bold;
color: #FF4B4B;
text-align: center;
margin-bottom: -20px; # Adjusts the spacing below the title
}
</style>
<div class="title">🎓 STUDENT DROPOUT PREDICTION APP 🎓</div>
""", unsafe_allow_html=True)
# Display a banner image
st.image("banner.webp", use_column_width=True)
# Main page description
st.markdown("""
This app predicts the likelihood of a student dropping out 🚪.
Enter the student's details on the left sidebar to see the prediction result.
The prediction helps in identifying students at risk early, allowing for timely intervention to improve retention rates.
""")
import joblib
# Load the models
decision_tree = joblib.load('age_aware_models/decision_tree_model.joblib')
logistic_regression = joblib.load('age_aware_models/logistic_regression_model.joblib')
random_forest = joblib.load('age_aware_models/random_forest_model.joblib')
# Define a dictionary of models with their names, actual models, and types
models = {
'Decision Tree': {'model': decision_tree, 'type': 'Decision Tree'},
'Logistic Regression': {'model': logistic_regression, 'type': 'Logistic Regression'},
'Random Forest': {'model': random_forest, 'type': 'Random Forest'}
}
with st.sidebar:
# Streamlit UI to select a model
# Add some design to the header
st.write("<h2 style='color: #ff5733; text-align: center;'>Select Model</h2>", unsafe_allow_html=True)
st.header('')
# Ensure that this is defined before you try to use `model_name`
model_name = st.selectbox('Choose a model', list(models.keys()))
# Retrieve the selected model and its type from the dictionary after it's been defined
model = models[model_name]['model']
model_type = models[model_name]['type']
# Additional Streamlit code to display selected model and type or other UI elements
st.write(f"You have selected: {model_name}")
# Load trained model
@st.cache_resource
#def load_model():
# return LogisticRegression() # Load your trained model here
def preprocess_input(input_data, original_feature_names):
# Create a DataFrame from the input data
input_df = pd.DataFrame(input_data, index=[0])
# Ensure the DataFrame has the correct column structure
input_df = input_df.reindex(columns=original_feature_names, fill_value=0)
return input_df
original_feature_names = ['Marital_Status', 'Application_Mode', 'Application_Order', 'Course',
'Attendance', 'Previous_Qualification', 'Nationality',
'Mother_Qualification', 'Father_Qualification', 'Mother_Occupation',
'Father_Occupation', 'Displaced', 'Special_Needs', 'Debtor',
'Fees_UpToDate', 'Gender', 'Scholarship_Holder', 'Age', 'International',
'1st_Sem_Credits', '1st_Sem_Enrolled', '1st_Sem_Evaluations',
'1st_Sem_Approved', '1st_Sem_Grade', '1st_Sem_No_Evaluations',
'2nd_Sem_Credits', '2nd_Sem_Enrolled', '2nd_Sem_Evaluations',
'2nd_Sem_Approved', '2nd_Sem_Grade', '2nd_Sem_No_Evaluations',
'Unemployment_Rate', 'Inflation_Rate', 'GDP']
def map_and_select(label, mapping_or_value, min_value=None, max_value=None, step=None):
if isinstance(mapping_or_value, dict):
# Invert the mapping dictionary
inverted_mapping = {v: k for k, v in mapping_or_value.items()}
# Display the selectbox
selected_option = st.sidebar.selectbox(label, options=list(inverted_mapping.keys()))
# Retrieve numerical value based on the selected option
selected_value = inverted_mapping[selected_option]
st.sidebar.write(f"{label} Value:", selected_value)
return selected_value
else:
# Determine the type of input and display accordingly
if isinstance(mapping_or_value, float):
# Handle as a slider for float values
selected_value = st.sidebar.slider(label, min_value=min_value, max_value=max_value, value=mapping_or_value, step=step)
elif isinstance(mapping_or_value, int):
# Handle as a number input for int values
selected_value = st.sidebar.number_input(label, min_value=min_value, max_value=max_value, value=mapping_or_value, step=step)
else:
# Display as a text input for non-numeric values
selected_value = st.sidebar.text_input(label, value=str(mapping_or_value))
st.sidebar.write(f"{label}:", selected_value)
return selected_value
def predict_dropout(input_data, model, model_type):
# Initialize variable to ensure it has a value in all code paths
dropout_prediction = None
# Check the model type to decide on the prediction method
if model_type == "Logistic Regression" or model_type == "Decision Tree" or model_type == "Random Forest":
# Use model.predict for predictions
dropout_prediction = model.predict(input_data)
else:
raise ValueError("Unsupported model type.")
return dropout_prediction
def map_dropout_prediction(prediction):
if prediction == 1:
return "Dropout", "🎓", "The model predicts that the student is likely to dropout."
else:
return "Not Dropout", "👩🎓", "The model predicts that the student is not likely to dropout."
marital_mapping = {
1: 'Single',
2: 'Married',
3: 'Widower',
4: 'Divorced',
5: 'Facto union',
6: 'Legally separated'
}
# Add some design to the header
st.sidebar.write("<h2 style='color: #ff5733; text-align: center;'>Enter Student Details</h2>", unsafe_allow_html=True)
# Use the map_and_select function to handle mapping and selection for Marital Status
marital_status = map_and_select('Marital Status', marital_mapping)
application_mode_mapping = {
1: '1st phase—general contingent',
2: 'Ordinance No. 612/93',
3: '1st phase—special contingent (Azores Island)',
4: 'Holders of other higher courses',
5: 'Ordinance No. 854-B/99',
6: 'International student (bachelor)',
7: '1st phase—special contingent (Madeira Island)',
8: '2nd phase—general contingent',
9: '3rd phase—general contingent',
10: 'Ordinance No. 533-A/99, item b2) (Different Plan)',
11: 'Ordinance No. 533-A/99, item b3 (Other Institution)',
12: 'Over 23 years old',
13: 'Transfer',
14: 'Change in course',
15: 'Technological specialization diploma holders',
16: 'Change in institution/course',
17: 'Short cycle diploma holders',
18: 'Change in institution/course (International)'
}
application_mode = map_and_select('Application Mode', application_mode_mapping)
#application_mode = st.sidebar.selectbox('Application Mode', options=range(1, 10)) # Assuming modes 1 through 9
#st.sidebar.write("application Mode:", application_mode)
application_order_mapping = {
1: 'First',
2: 'Second',
3: 'Third',
4: 'Fourth',
5: 'Fifth',
6: 'Sixth',
9: 'Ninth',
0: 'Zero'
}
application_order = map_and_select('Application Order', application_order_mapping)
#application_order = st.sidebar.number_input('Application Order', min_value=0, max_value=10, value=1)
#st.sidebar.write("application Order:", application_order)
courses_mapping = {
1: 'Biofuel Production Technologies',
2: 'Animation and Multimedia Design',
3: 'Social Service (evening attendance)',
4: 'Agronomy',
5: 'Communication Design',
6: 'Veterinary Nursing',
7: 'Informatics Engineering',
8: 'Equiniculture',
9: 'Management',
10: 'Social Service',
11: 'Tourism',
12: 'Nursing',
13: 'Oral Hygiene',
14: 'Advertising and Marketing Management',
15: 'Journalism and Communication',
16: 'Basic Education',
17: 'Management (evening attendance)'
}
# Use the map_and_select function to handle mapping and selection for Courses
course = map_and_select('Course', courses_mapping)
#course = st.sidebar.selectbox('Course', options=range(1, 100)) # Update range based on actual course codes
#st.sidebar.write("course:", course)
attendance_mapping = {
1: 'Daytime',
2: 'Evening'
}
# Use the map_and_select function to handle mapping and selection for Daytime/Evening Attendance
daytime_evening_attendance = map_and_select('Daytime/Evening Attendance', attendance_mapping)
#daytime_evening_attendance = st.sidebar.radio('Daytime/Evening Attendance', options=[1, 2], format_func=lambda x: 'Daytime' if x == 1 else 'Evening')
#st.sidebar.write("Daytime Evening Attendance:", daytime_evening_attendance)
previous_qualification_mapping = {
1: 'Secondary education',
2: 'Higher education—bachelor’s degree',
3: 'Higher education—degree',
4: 'Higher education—master’s degree',
5: 'Higher education—doctorate',
6: 'Frequency of higher education',
7: '12th year of schooling—not completed',
8: '11th year of schooling—not completed',
9: 'Other—11th year of schooling',
10: '10th year of schooling',
11: '10th year of schooling—not completed',
12: 'Basic education 3rd cycle (9th/10th/11th year) or equivalent',
13: 'Basic education 2nd cycle (6th/7th/8th year) or equivalent',
14: 'Technological specialization course',
15: 'Higher education—degree (1st cycle)',
16: 'Professional higher technical course',
17: 'Higher education—master’s degree (2nd cycle)'
}
# Use the map_and_select function to handle mapping and selection for Previous Qualification
previous_qualification = map_and_select('Previous Qualification', previous_qualification_mapping)
## Output the selected value using st.write
#st.sidebar.write("Previous Qualification:", selected_previous_qualification_label)
#previous_qualification = st.sidebar.selectbox('Previous Qualification', options=range(1, 20)) # Update range based on actual qualifications
#st.sidebar.write("Previous Qualification:", previous_qualification)
nationality_mapping = {
1: 'Portuguese', 2: 'German', 3: 'Spanish', 4: 'Italian', 5: 'Dutch', 6: 'English',
7: 'Lithuanian', 8: 'Angolan', 9: 'Cape Verdean', 10: 'Guinean', 11: 'Mozambican',
12: 'Santomean', 13: 'Turkish', 14: 'Brazilian', 15: 'Romanian', 16: 'Moldova (Republic of)',
17: 'Mexican', 18: 'Ukrainian', 19: 'Russian', 20: 'Cuban', 21: 'Colombian'
}
nationality = map_and_select('Nationality', nationality_mapping)
#nationality = st.sidebar.selectbox('Nationality', options=range(1, 200)) # Update range based on actual nationality codes
#st.sidebar.write("nationality:", nationality)
qualification_mapping = {
1: 'Secondary Education',
2: 'Higher Education - Undergraduate',
3: 'Higher Education - Undergraduate',
4: 'Higher Education - Graduate',
5: 'Higher Education - Graduate',
6: 'Higher Education - Undergraduate',
7: 'Primary Education',
8: 'Primary Education',
9: 'Primary Education',
10: 'Secondary Education',
11: 'Secondary Education',
12: 'Secondary Education',
13: 'Secondary Education',
14: 'Secondary Education',
15: 'Secondary Education',
16: 'Vocational/Technical',
17: 'Secondary Education',
18: 'Primary Education',
19: 'Secondary Education',
20: 'Primary Education',
21: 'Primary Education',
22: 'Secondary Education',
23: 'Secondary Education',
24: 'Unknown',
25: 'Primary Education',
26: 'Primary Education',
27: 'Primary Education',
28: 'Primary Education',
29: 'Vocational/Technical',
30: 'Higher Education - Undergraduate',
31: 'Higher Education - Undergraduate',
32: 'Higher Education - Undergraduate',
33: 'Higher Education - Graduate',
34: 'Higher Education - Graduate'
}
mother_qualification = map_and_select('Mother\'s Qualification', qualification_mapping)
#mother_qualification = st.sidebar.selectbox('Mother\'s Qualification', options=range(1, 20))
#st.sidebar.write("Mother Qualification:", mother_qualification)
father_qualification = map_and_select('Father\'s Qualification', qualification_mapping)
#father_qualification = st.sidebar.selectbox('Father\'s Qualification', options=range(1, 20))
#st.sidebar.write("Father Qualification:", father_qualification)
occupation_mapping = {
1: 'Student',
2: 'Representatives of the Legislative Power and Executive Bodies, Directors, Directors and Executive Managers',
3: 'Specialists in Intellectual and Scientific Activities',
4: 'Intermediate Level Technicians and Professions',
5: 'Administrative staff',
6: 'Personal Services, Security and Safety Workers, and Sellers',
7: 'Farmers and Skilled Workers in Agriculture, Fisheries, and Forestry',
8: 'Skilled Workers in Industry, Construction, and Craftsmen',
9: 'Installation and Machine Operators and Assembly Workers',
10: 'Unskilled Workers',
11: 'Armed Forces Professions',
12: 'Other Situation',
13: '(blank)',
14: 'Armed Forces Officers',
15: 'Armed Forces Sergeants',
16: 'Other Armed Forces personnel',
17: 'Directors of administrative and commercial services',
18: 'Hotel, catering, trade, and other services directors',
19: 'Specialists in the physical sciences, mathematics, engineering, and related techniques',
20: 'Health professionals',
21: 'Teachers',
22: 'Specialists in finance, accounting, administrative organization, and public and commercial relations',
23: 'Intermediate level science and engineering technicians and professions',
24: 'Technicians and professionals of intermediate level of health',
25: 'Intermediate level technicians from legal, social, sports, cultural, and similar services',
26: 'Information and communication technology technicians',
27: 'Office workers, secretaries in general, and data processing operators',
28: 'Data, accounting, statistical, financial services, and registry-related operators',
29: 'Other administrative support staff',
30: 'Personal service workers',
31: 'Sellers',
32: 'Personal care workers and the like',
33: 'Protection and security services personnel',
34: 'Market-oriented farmers and skilled agricultural and animal production workers',
35: 'Farmers, livestock keepers, fishermen, hunters and gatherers, and subsistence',
36: 'Skilled construction workers and the like, except electricians',
37: 'Skilled workers in metallurgy, metalworking, and similar',
38: 'Skilled workers in electricity and electronics',
39: 'Workers in food processing, woodworking, and clothing and other industries and crafts',
40: 'Fixed plant and machine operators',
41: 'Assembly workers',
42: 'Vehicle drivers and mobile equipment operators',
43: 'Unskilled workers in agriculture, animal production, and fisheries and forestry',
44: 'Unskilled workers in extractive industry, construction, manufacturing, and transport',
45: 'Meal preparation assistants',
46: 'Street vendors (except food) and street service providers'
}
mother_occupation = map_and_select('Mother\'s Occupation', occupation_mapping)
#mother_occupation = st.sidebar.selectbox('Mother\'s Occupation', options=range(1, 50)) # Update range based on actual occupations
#st.sidebar.write("Mother Occupation:", mother_occupation)
father_occupation = map_and_select('Father\'s Occupation', occupation_mapping)
#father_occupation = st.sidebar.selectbox('Father\'s Occupation', options=range(1, 50))
#st.sidebar.write("Father Occupation:", father_occupation)
displaced_mapping = {
1: 'Yes',
0: 'No'
}
displaced = map_and_select('Displaced', displaced_mapping)
#displaced = st.sidebar.radio('Displaced', options=[0, 1], format_func=lambda x: 'No' if x == 0 else 'Yes')
#st.sidebar.write("Displaced:", displaced)
educational_special_needs_mapping = {
1: 'Yes',
0: 'No'
}
debtor_mapping = {
1: 'Yes',
0: 'No'
}
educational_special_needs = map_and_select('Educational Special Needs', educational_special_needs_mapping)
#st.sidebar.write("Educational Special Needs:", educational_special_needs_mapping[educational_special_needs])
debtor = map_and_select('Debtor', debtor_mapping)
#st.sidebar.write("Debtor:", debtor_mapping[debtor])
#educational_special_needs = st.sidebar.radio('Educational Special Needs', options=[0, 1], format_func=lambda x: 'No' if x == 0 else 'Yes')
#st.sidebar.write("Educational Special Needs:", educational_special_needs)
#debtor = st.sidebar.radio('Debtor', options=[0, 1], format_func=lambda x: 'No' if x == 0 else 'Yes')
#st.sidebar.write("Debtor:", debtor)
# Example usage for single input
tuition_fees_up_to_date = map_and_select('Tuition Fees Up to Date', 5000, min_value=0, max_value=10000)
#tuition_fees_up_to_date = st.sidebar.number_input('Tuition Fees Up to Date', min_value=0, max_value=10000, value=5000)
#st.sidebar.write("tuition_fees_up_to_date:", tuition_fees_up_to_date)
# Gender replacement
gender_mapping = {
1: 'male',
0: 'female'
}
gender = map_and_select('Gender', gender_mapping)
#gender = st.sidebar.radio('Gender', options=[1, 2], format_func=lambda x: 'Male' if x == 1 else 'Female')
#st.sidebar.write("gender:", gender)
scholarship_mapping = {
1: 'Yes',
0: 'No'
}
scholarship_holder = map_and_select('Scholarship Holder', scholarship_mapping)
#st.sidebar.write("Scholarship holder:", scholarship_mapping[scholarship_holder])
#scholarship_holder = st.sidebar.radio('Scholarship Holder', options=[0, 1], format_func=lambda x: 'No' if x == 0 else 'Yes')
#st.sidebar.write("Scholarship holder:", scholarship_holder)
# Example usage for single input
age_at_enrollment = map_and_select('Age at Enrollment', 16, min_value=6, max_value=18)
#age_at_enrollment = st.sidebar.number_input('Age at Enrollment', min_value=16, max_value=60, value=18)
#st.sidebar.write("Age at Enrollment:", age_at_enrollment)
international_mapping = {
1: 'Yes',
0: 'No'
}
international = map_and_select('International', international_mapping)
#st.sidebar.write("International:", international_mapping[international])
#international = st.sidebar.radio('International', options=[0, 1], format_func=lambda x: 'No' if x == 0 else 'Yes')
#st.sidebar.write("International:", international)
unemployment_rate = map_and_select('Unemployment Rate', 10.8, min_value=0.0, max_value=100.0 )
#st.sidebar.write("unemployment_rate:", unemployment_rate)
#unemployment_rate = st.sidebar.slider('Unemployment Rate', min_value=0.0, max_value=100.0, value=10.8)
#st.sidebar.write("Unemployment Rate:", unemployment_rate)
inflation_rate = map_and_select('Inflation Rate', 1.4, min_value=-10.0, max_value=30.0)
#st.sidebar.write("inflation_rate:", inflation_rate)
# Use map_and_select for the inflation_rate
#inflation_rate = map_and_select(1, 'Inflation Rate', 1.4)
#st.sidebar.write("Inflation Rate:", inflation_rate)
#inflation_rate = st.sidebar.slider('Inflation Rate', min_value=-10.0, max_value=30.0, value=1.4)
#st.sidebar.write("Inflation Rate:", inflation_rate)
#gdp = st.sidebar.number_input('GDP', min_value=0.0, max_value=100.0, value=1.74)
#st.sidebar.write("GDP:", gdp)
# Use map_and_select for the inflation_rate
gdp = map_and_select('GDP', 1.74, min_value=0.0, max_value=100.0)
#st.sidebar.write("Inflation Rate:", gdp)
#st.header('Curricular Units 1st Semester')
#credited_1st_sem = st.sidebar.number_input('Credited Units 1st Semester', min_value=0, step=1)
#st.sidebar.write("Credited Units 1st Semester:", credited_1st_sem)
#enrolled_1st_sem = st.sidebar.number_input('Enrolled Units 1st Semester', min_value=0, step=1)
#st.sidebar.write("Enrolled Units 1st Semester:", enrolled_1st_sem)
#evaluations_1st_sem = st.sidebar.number_input('Evaluations 1st Semester', min_value=0, step=1)
#st.sidebar.write("Evaluations 1st Semester:", evaluations_1st_sem)
#approved_1st_sem = st.sidebar.number_input('Approved Units 1st Semester', min_value=0, step=1)
#st.sidebar.write("Approved Units 1st Semester:", approved_1st_sem)
#grade_1st_sem = st.sidebar.number_input('Grade 1st Semester', min_value=0.0, max_value=10.0, step=0.1)
#st.sidebar.write("Grade 1st Semester:", grade_1st_sem)
#without_evaluations_1st_sem = st.sidebar.number_input('Units without Evaluations 1st Semester', min_value=0, step=1)
#st.sidebar.write("GDP:", without_evaluations_1st_sem)
# Use map_and_select for the various inputs
credited_1st_sem = map_and_select('Credited Units 1st Semester', 0, min_value=0, step=1)
#st.sidebar.write("Credited Units 1st Semester:", credited_1st_sem)
enrolled_1st_sem = map_and_select('Enrolled Units 1st Semester', 0, min_value=0, step=1)
#st.sidebar.write("Enrolled Units 1st Semester:", enrolled_1st_sem)
evaluations_1st_sem = map_and_select('Evaluations 1st Semester', 0, min_value=0, step=1)
#st.sidebar.write("Evaluations 1st Semester:", evaluations_1st_sem)
approved_1st_sem = map_and_select('Approved Units 1st Semester', 0, min_value=0, step=1)
#st.sidebar.write("Approved Units 1st Semester:", approved_1st_sem)
grade_1st_sem = map_and_select('Grade 1st Semester', 0.0, min_value=0.0, max_value=10.0, step=0.1)
#st.sidebar.write("Grade 1st Semester:", grade_1st_sem)
without_evaluations_1st_sem = map_and_select('Units without Evaluations 1st Semester', 0, min_value=0, step=1)
#st.sidebar.write("Units without Evaluations 1st Semester:", without_evaluations_1st_sem)
#st.sidebar.header('Curricular Units 2nd Semester')
#credited_2nd_sem = st.sidebar.number_input('Credited Units 2nd Semester', min_value=0, step=1)
#st.sidebar.write("Credited Units 2nd Semester:", credited_2nd_sem)
#enrolled_2nd_sem = st.sidebar.number_input('Enrolled Units 2nd Semester', min_value=0, step=1)
#st.sidebar.write("Enrolled Units 2nd Semester:", enrolled_2nd_sem)
#evaluations_2nd_sem = st.sidebar.number_input('Evaluations 2nd Semester', min_value=0, step=1)
#st.sidebar.write("Evaluations 2nd Semester:", evaluations_2nd_sem)
#approved_2nd_sem = st.sidebar.number_input('Approved Units 2nd Semester', min_value=0, step=1)
#st.sidebar.write("Approved Units 2nd Semester:", approved_2nd_sem)
#grade_2nd_sem = st.sidebar.number_input('Grade 2nd Semester', min_value=0.0, max_value=10.0, step=0.1)
#st.sidebar.write("Grade 2nd Semester:", grade_2nd_sem)
#without_evaluations_2nd_sem = st.sidebar.number_input('Units without Evaluations 2nd Semester', min_value=0, step=1)
#st.sidebar.write("Units without Evaluations 2nd Semester:", without_evaluations_2nd_sem)
# Use map_and_select for the various inputs for the 2nd semester
credited_2nd_sem = map_and_select('Credited Units 2nd Semester', 0, min_value=0, step=1)
#st.sidebar.write("Credited Units 2nd Semester:", credited_2nd_sem)
enrolled_2nd_sem = map_and_select('Enrolled Units 2nd Semester', 0, min_value=0, step=1)
#st.sidebar.write("Enrolled Units 2nd Semester:", enrolled_2nd_sem)
evaluations_2nd_sem = map_and_select('Evaluations 2nd Semester', 0, min_value=0, step=1)
#st.sidebar.write("Evaluations 2nd Semester:", evaluations_2nd_sem)
approved_2nd_sem = map_and_select('Approved Units 2nd Semester', 0, min_value=0, step=1)
#st.sidebar.write("Approved Units 2nd Semester:", approved_2nd_sem)
grade_2nd_sem = map_and_select('Grade 2nd Semester', 0.0, min_value=0.0, max_value=10.0, step=0.1)
#st.sidebar.write("Grade 2nd Semester:", grade_2nd_sem)
without_evaluations_2nd_sem = map_and_select('Units without Evaluations 2nd Semester', 0, min_value=0, step=1)
#st.sidebar.write("Units without Evaluations 2nd Semester:", without_evaluations_2nd_sem)
input_data = {
'Marital_Status': marital_status,
'Application_Mode' : application_mode,
'Application_Order': application_order,
'Course': course,
'Attendance': daytime_evening_attendance,
'Previous_Qualification': previous_qualification,
'Nationality': nationality,
'Mother_Qualification': mother_qualification,
'Father_Qualification': father_qualification,
'Mother_Occupation': mother_occupation,
'Father_Occupation': father_occupation,
'Displaced': displaced,
'Special_Needs': educational_special_needs,
'Debtor': debtor,
'Fees_UpToDate':tuition_fees_up_to_date,
'Gender': gender,
'Scholarship_Holder': scholarship_holder,
'Age': age_at_enrollment,
'International': international,
'1st_Sem_Credits': credited_1st_sem,
'1st_Sem_Enrolled': enrolled_1st_sem,
'1st_Sem_Evaluations': evaluations_1st_sem,
'1st_Sem_Approved': approved_1st_sem,
'1st_Sem_Grade': grade_1st_sem,
'1st_Sem_No_Evaluations': without_evaluations_1st_sem,
'2nd_Sem_Credits': credited_2nd_sem,
'2nd_Sem_Enrolled': enrolled_2nd_sem,
'2nd_Sem_Evaluations': evaluations_2nd_sem,
'2nd_Sem_Approved': approved_2nd_sem,
'2nd_Sem_Grade': grade_2nd_sem,
'2nd_Sem_No_Evaluations': without_evaluations_2nd_sem,
'Unemployment_Rate': unemployment_rate,
'Inflation_Rate': inflation_rate,
'GDP':gdp
}
if st.sidebar.button('Predict Dropout'):
try:
with st.spinner("Predicting..."):
# Simulate a long-running prediction process
progress_bar = st.progress(0)
for i in range(5): # Simulate progress
time.sleep(0.1) # Sleep for a short period to simulate work
progress_bar.progress((i + 1) * 20)
# Convert input dictionary to a 2D array
input_array = np.array(list(input_data.values())).reshape(1, -1)
# Perform prediction
dropout_label = predict_dropout(input_array, model, model_type)
dropout_label, emoji, explanation = map_dropout_prediction(dropout_label)
# Display the prediction result
st.success("Prediction complete!")
st.write(f"Prediction: {dropout_label} {emoji}")
st.write(explanation)
# Display images
if dropout_label == "Dropout":
st.image("dropout_image.webp", caption="Image representing a dropout student", use_column_width=True)
else:
st.image("not_dropout_image.webp", caption="Image representing a non-dropout student", use_column_width=True)
except Exception as e:
st.error(f"An error occurred: {str(e)}")
|