Spaces:
Sleeping
Sleeping
First iteration from Copilot without changes
Browse files
app.py
ADDED
@@ -0,0 +1,123 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# app.py
|
2 |
+
|
3 |
+
import gradio as gr
|
4 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, Trainer, TrainingArguments, TextDataset, DataCollatorForLanguageModeling
|
5 |
+
import torch
|
6 |
+
import os
|
7 |
+
|
8 |
+
# Check if CUDA is available
|
9 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
10 |
+
|
11 |
+
# Model name
|
12 |
+
PRETRAINED_MODEL = "distilgpt2"
|
13 |
+
MODEL_DIR = "./fine_tuned_model"
|
14 |
+
|
15 |
+
# Load tokenizer
|
16 |
+
tokenizer = AutoTokenizer.from_pretrained(PRETRAINED_MODEL)
|
17 |
+
|
18 |
+
def fine_tune_model(files):
|
19 |
+
# Combine uploaded files into one text
|
20 |
+
if not files:
|
21 |
+
return "No files uploaded."
|
22 |
+
text_data = ""
|
23 |
+
for file in files:
|
24 |
+
text = file.decode('utf-8')
|
25 |
+
text_data += text + "\n"
|
26 |
+
|
27 |
+
# Save combined text to a file
|
28 |
+
with open("train.txt", "w") as f:
|
29 |
+
f.write(text_data)
|
30 |
+
|
31 |
+
# Create dataset
|
32 |
+
dataset = TextDataset(
|
33 |
+
tokenizer=tokenizer,
|
34 |
+
file_path="train.txt",
|
35 |
+
block_size=128
|
36 |
+
)
|
37 |
+
|
38 |
+
data_collator = DataCollatorForLanguageModeling(
|
39 |
+
tokenizer=tokenizer, mlm=False,
|
40 |
+
)
|
41 |
+
|
42 |
+
# Load pre-trained model
|
43 |
+
model = AutoModelForCausalLM.from_pretrained(PRETRAINED_MODEL)
|
44 |
+
model.to(device)
|
45 |
+
|
46 |
+
# Set training arguments
|
47 |
+
training_args = TrainingArguments(
|
48 |
+
output_dir=MODEL_DIR,
|
49 |
+
overwrite_output_dir=True,
|
50 |
+
num_train_epochs=1,
|
51 |
+
per_device_train_batch_size=4,
|
52 |
+
save_steps=500,
|
53 |
+
save_total_limit=2,
|
54 |
+
logging_steps=100,
|
55 |
+
)
|
56 |
+
|
57 |
+
# Initialize Trainer
|
58 |
+
trainer = Trainer(
|
59 |
+
model=model,
|
60 |
+
args=training_args,
|
61 |
+
data_collator=data_collator,
|
62 |
+
train_dataset=dataset,
|
63 |
+
)
|
64 |
+
|
65 |
+
# Fine-tune model
|
66 |
+
trainer.train()
|
67 |
+
|
68 |
+
# Save the model
|
69 |
+
trainer.save_model(MODEL_DIR)
|
70 |
+
tokenizer.save_pretrained(MODEL_DIR)
|
71 |
+
|
72 |
+
return "Fine-tuning completed successfully!"
|
73 |
+
|
74 |
+
def generate_response(prompt, temperature, max_length, top_p):
|
75 |
+
# Load fine-tuned model if available
|
76 |
+
if os.path.exists(MODEL_DIR):
|
77 |
+
model = AutoModelForCausalLM.from_pretrained(MODEL_DIR)
|
78 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_DIR)
|
79 |
+
else:
|
80 |
+
model = AutoModelForCausalLM.from_pretrained(PRETRAINED_MODEL)
|
81 |
+
tokenizer = AutoTokenizer.from_pretrained(PRETRAINED_MODEL)
|
82 |
+
model.to(device)
|
83 |
+
|
84 |
+
# Encode prompt
|
85 |
+
input_ids = tokenizer.encode(prompt, return_tensors='pt').to(device)
|
86 |
+
|
87 |
+
# Generate output
|
88 |
+
output = model.generate(
|
89 |
+
input_ids,
|
90 |
+
do_sample=True,
|
91 |
+
max_length=int(max_length),
|
92 |
+
temperature=float(temperature),
|
93 |
+
top_p=float(top_p),
|
94 |
+
pad_token_id=tokenizer.eos_token_id
|
95 |
+
)
|
96 |
+
|
97 |
+
response = tokenizer.decode(output[0], skip_special_tokens=True)
|
98 |
+
return response
|
99 |
+
|
100 |
+
# Build Gradio Interface
|
101 |
+
|
102 |
+
with gr.Blocks() as demo:
|
103 |
+
gr.Markdown("# π Language Model Fine-Tuner and Chatbot")
|
104 |
+
|
105 |
+
with gr.Tab("Fine-Tune Model"):
|
106 |
+
gr.Markdown("## π Fine-Tune the Model with Your Documents")
|
107 |
+
file_inputs = gr.File(label="Upload Text Files", file_count="multiple", type="bytes")
|
108 |
+
fine_tune_button = gr.Button("Start Fine-Tuning")
|
109 |
+
fine_tune_status = gr.Textbox(label="Status", interactive=False)
|
110 |
+
fine_tune_button.click(fine_tune_model, inputs=file_inputs, outputs=fine_tune_status)
|
111 |
+
|
112 |
+
with gr.Tab("Chat with Model"):
|
113 |
+
gr.Markdown("## π¬ Chat with the Fine-Tuned Model")
|
114 |
+
user_input = gr.Textbox(label="Your Message")
|
115 |
+
with gr.Accordion("Advanced Parameters", open=False):
|
116 |
+
temperature = gr.Slider(0.1, 1.0, value=0.7, label="Temperature")
|
117 |
+
max_length = gr.Slider(20, 200, value=100, step=10, label="Max Length")
|
118 |
+
top_p = gr.Slider(0.1, 1.0, value=0.9, label="Top-p")
|
119 |
+
generate_button = gr.Button("Generate Response")
|
120 |
+
bot_response = gr.Textbox(label="Model Response", interactive=False)
|
121 |
+
generate_button.click(generate_response, inputs=[user_input, temperature, max_length, top_p], outputs=bot_response)
|
122 |
+
|
123 |
+
demo.launch()
|