abrakjamson
Creating version based on Llama 3.2 1B
f7acd50
raw
history blame
42.1 kB
"""
Controlled Chat is a graphical and chat interface to Representation Engineering.
It creates a single Gradio application to be run locally or on a Hugging Face space.
This version is intended to run on CPU, and so uses Llama 3.2 1B.
It is hosted online at https://huggingface.co/spaces/Abrak/Controlled_Chat_CPU/.
There is also a GPU version based on Mistral 0.3 9B, requiring 16GB of VRAM.
Find it at https://huggingface.co/spaces/Abrak/Controlled_Chat.
You can also run thie application locally: create a venv, install the requirements, and run this script.
If you want to port this to another model, you'll need to do a few things:
1. Change the model path on the first line of code
2. Experiment with different ranges of layers in the call to ControlModel()
3. Change out the construct_prompt_* function to fit the model's prompt syntax
4. Call train_models()
If you clone this project, you can add new models into the control_models directory and everyting should work.
This file's code is licensed under MIT. See the README.MD and LLAMA LICENSE.TXT.
"""
import os
import threading
import json
import csv
import torch
import re
import tempfile
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
from repeng import ControlVector, ControlModel, DatasetEntry
import gradio as gr
# Initialize model and tokenizer
from huggingface_hub import login
# Initialize model and tokenizer
llama_path = "meta-llama/Llama-3.2-1B-Instruct"
#llama_path = r"E:/language_models/models/mistral"
access_token = os.getenv("llamaaccesstoken")
login(access_token)
tokenizer = AutoTokenizer.from_pretrained(llama_path)
tokenizer.pad_token_id = 0
model = AutoModelForCausalLM.from_pretrained(
llama_path,
torch_dtype=torch.float16,
trust_remote_code=True,
use_safetensors=True
)
cuda = torch.cuda.is_available()
print(f"Is CUDA available: {cuda}")
model = model.to("cuda:0" if cuda else "cpu")
if cuda:
print(f"CUDA device: {torch.cuda.get_device_name(torch.cuda.current_device())}")
# in mistral, there are 32 layers from -31 to 0. set to 13 layers from -5 to -18
# model = ControlModel(model, list(range(-5, -18, -1)))
# in llama 3.2 there are 32 layers from 0 to 15. With some experimentation, I found setting layers 10 through 5 is best
model = ControlModel(model, list(range(10, 5, -1)))
# Generation settings
# Generation settings
default_generation_settings = {
"pad_token_id": tokenizer.eos_token_id,
"do_sample": False, # Deterministic output
"max_new_tokens": 384,
"repetition_penalty": 1.1, # Reduce repetition
}
# List available control vectors
control_vector_files = [f for f in os.listdir('control_models') if f.endswith('.gguf')]
if not control_vector_files:
pass
#raise FileNotFoundError("No .gguf control vector files found in the control_models directory.")
# Function to toggle slider visibility based on checkbox state
def toggle_slider(checked):
return gr.update(visible=checked)
def construct_prompt_mistral(history, system_prompt, user_message):
"""
Converts the history (list of tuples) back into the string format Mistral expects
"""
formatted_prompt = ""
user_tag, asst_tag = "[INST]", "[/INST]"
# <s>[INST] user message[/INST] assistant message</s>[INST] new user message[/INST]
# Mistral expects the history to be wrapped in <s>history</s>, so it's added here
if len(history) > 0:
formatted_prompt += "<s>"
# Append the system prompt if provided
if system_prompt.strip():
formatted_prompt += f"{user_tag} {system_prompt}{asst_tag} "
# Construct the formatted prompt based on history
if len(history) > 0:
for turn in history:
user_msg, asst_msg = turn
asst_msg = asst_msg.split("\n")[1:]
formatted_prompt += f"{user_tag} {user_msg} {asst_tag} {asst_msg}"
if len(history) > 0:
formatted_prompt += "</s>"
# Append the new user message
formatted_prompt += f"{user_tag} {user_message} {asst_tag}"
return formatted_prompt
def construct_prompt_llama(history, system_prompt, user_message):
"""
Converts the history (list of tuples) back into the string format LLama expects
LLama prompt format:
<|begin_of_text|><|start_header_id|>system<|end_header_id|>
Cutting Knowledge Date: December 2023
Today Date: 23 July 2024
You are a helpful assistant
<|eot_id|>
<|start_header_id|>user<|end_header_id|>
What is the capital of France?
<|eot_id|>
<|start_header_id|>assistant<|end_header_id|>
"""
formatted_prompt = ""
# Begin the prompt with the start token
formatted_prompt += "<|begin_of_text|>\n"
# Append the system prompt if provided
if system_prompt.strip():
formatted_prompt += "<|start_header_id|>system<|end_header_id|>\n"
formatted_prompt += f"{system_prompt.strip()}"
formatted_prompt += "<|eot_id|>\n"
# Construct the formatted prompt based on history
for user_msg, asst_msg in history:
# Append the user message
formatted_prompt += "<|start_header_id|>user<|end_header_id|>\n"
formatted_prompt += f"{user_msg.strip()}"
formatted_prompt += "<|eot_id|>\n"
# Append the assistant's response
formatted_prompt += "<|start_header_id|>assistant<|end_header_id|>\n"
formatted_prompt += f"{asst_msg.strip()}"
formatted_prompt += "<|eot_id|>\n"
# Append the new user message
formatted_prompt += "<|start_header_id|>user<|end_header_id|>\n"
formatted_prompt += f"{user_message.strip()}"
formatted_prompt += "<|eot_id|>\n"
# Indicate that the assistant should provide a response
formatted_prompt += "<|start_header_id|>assistant<|end_header_id|>\n"
return formatted_prompt
def generate_response(system_prompt, user_message, history, max_new_tokens, repitition_penalty, do_sample, user_model, input_checkbox, input_slider, *args):
"""
Applies the control vectors and calls the language model.
Returns a list of tuples, the user message and the assistant response,
which Gradio uses to update the chatbot history
"""
global previous_turn
previous_turn = user_message
combined_vector = None
assistant_message_title = ""
# args not included in test_generate
if args:
# Separate checkboxes and sliders based on type
# The first x in args are the checkbox names (the file names)
# The second x in args are the slider values
checkboxes = []
sliders = []
for i in range(len(control_vector_files)):
checkboxes.append(args[i])
sliders.append(args[len(control_vector_files) + i])
# Apply selected control vectors with their corresponding weights
control_vectors = []
for i in range(len(control_vector_files)):
if checkboxes[i]:
cv_file = control_vector_files[i]
weight = sliders[i]
# Set the control vector's weight (and sign) by multiplying by its slider value
control_vectors.append(ControlVector.import_gguf(f"control_models/{cv_file}") * weight)
assistant_message_title += f"{cv_file.split('.')[0]}: {weight};"
# The control model takes a sum of positive and negative control vectors
for i in range(len(control_vectors)):
if combined_vector is None:
combined_vector = control_vectors[i]
else:
combined_vector += control_vectors[i]
if input_checkbox:
# User has uploaded their own gguf control vector
input_vector = ControlVector.import_gguf(user_model)
if combined_vector is None:
combined_vector = input_vector * input_slider
else:
combined_vector += input_vector * input_slider
assistant_message_title += f"Uploaded: {input_slider};"
# Set the combined set of vectors as the control for the model
try:
if combined_vector is not None:
model.reset()
model.set_control(combined_vector)
except Exception as e:
print(f"Failed to set Control: {e}")
formatted_prompt = construct_prompt_llama(history, system_prompt, user_message)
# Tokenize the input
input_ids = tokenizer(formatted_prompt, return_tensors="pt").to(model.device)
generation_settings = {
"pad_token_id": tokenizer.eos_token_id,
"do_sample": do_sample,
"max_new_tokens": int(max_new_tokens),
"repetition_penalty": repetition_penalty.value,
}
timeout = 120.0
if cuda:
timeout = 15.0
_streamer = TextIteratorStreamer(tokenizer, timeout=timeout, skip_prompt=True, skip_special_tokens=False,)
generate_kwargs = dict(
input_ids,
streamer=_streamer,
pad_token_id= tokenizer.eos_token_id,
do_sample= do_sample,
max_new_tokens= int(max_new_tokens),
repetition_penalty= repetition_penalty.value,
)
t = threading.Thread(target=model.generate, kwargs=generate_kwargs)
t.start()
# Display the response as it streams in, prepending the control vector info
partial_message = ""
#show the control vector info while we wait for the first token
temp_output = "*" + assistant_message_title + "*" + "\n\n*Please wait*..." + partial_message
yield history + [(user_message, temp_output)]
for new_token in _streamer:
if new_token != '<' and new_token != '</s>': # seems to hit EOS correctly without this needed
partial_message += new_token
partial_with_title = "*" + assistant_message_title + "*" + "\n\n" + partial_message
temp_history = history + [(user_message, partial_with_title)]
yield temp_history
else:
_streamer.end()
# remove the trailing </s> if present
# it won't be present if the model ran out from max_tokens
def get_assistant_response(input_string):
if len(input_string) >= 10:
if input_string[-10:] == "<|eot_id|>":
return input_string[:-10]
else:
return input_string
else:
return input_string
# Update conversation history
assistant_response = get_assistant_response(partial_message)
assistant_response_display = f"*{assistant_message_title}*\n\n{assistant_response}"
# Update conversation history
history.append((user_message, assistant_response_display))
return history
def generate_response_with_retry(system_prompt, user_message, history, max_new_tokens, repitition_penalty, do_sample, user_model, input_checkbox, input_slider, *args):
# Remove last user input and assistant response from history, then call generate_response()
global previous_turn
previous_ueser_message = previous_turn
if history:
history = history[0:-1]
# Using the previous turn's text, even though it isn't in the textbox anymore
for output in generate_response(system_prompt, previous_ueser_message, history, max_new_tokens, repetition_penalty, do_sample, user_model, input_checkbox, input_slider, *args):
yield [output, previous_ueser_message]
# Function to reset the conversation history
def reset_chat():
# returns a blank state
return [], ""
def get_checkboxes():
# rebuilding the list of checkboxes, so that these presets don't have to change
# when adding a new control model
# Warning: adding any new components into the header before the checkboxes is going to break this path
checkbox_column = app.children[0].children[0].children[2].children[0].children
#checkbox_column = app.children[2].children[0].children
model_names_and_indexes = {}
checkbox_index = 0
for i in range(len(checkbox_column)):
if isinstance(checkbox_column[i], gr.Row):
try:
model_name = checkbox_column[i].children[0].children[0].label
model_names_and_indexes[model_name] = checkbox_index
checkbox_index += 1
except IndexError:
# allow for other rows to be in the interface
pass
except AttributeError:
pass
return model_names_and_indexes
def set_preset_helpful(*args):
# gets the list of all checkboxes and sliders
# sets checkboxes and sliders accordingly to this persona
# args is a list of checkboxes and then slider values
# must return the updated list of checkboxes and sliders
new_checkbox_values = []
new_slider_values = []
model_names_and_indexes = get_checkboxes()
for check in model_names_and_indexes:
if check == "Empathetic":
new_checkbox_values.append(True)
new_slider_values.append(1.0)
elif check == "Optimistic":
new_checkbox_values.append(True)
new_slider_values.append(1.0)
else:
new_checkbox_values.append(False)
new_slider_values.append(0.0)
return new_checkbox_values + new_slider_values
def set_preset_conspiracist(*args):
# gets the list of all checkboxes and sliders
# sets checkboxes and sliders accordingly to this persona
# args is a list of checkboxes and then slider values
# must return the updated list of checkboxes and sliders
new_checkbox_values = []
new_slider_values = []
model_names_and_indexes = get_checkboxes()
for check in model_names_and_indexes:
if check == "Conspiracist":
new_checkbox_values.append(True)
new_slider_values.append(1.5)
elif check == "Creative":
new_checkbox_values.append(True)
new_slider_values.append(1.0)
elif check == "Lazy":
new_checkbox_values.append(True)
new_slider_values.append(-0.5)
elif check == "Honest":
new_checkbox_values.append(True)
new_slider_values.append(-1.0)
else:
new_checkbox_values.append(False)
new_slider_values.append(0.0)
return new_checkbox_values + new_slider_values
def set_preset_stoner(*args):
# gets the list of all checkboxes and sliders
# sets checkboxes and sliders accordingly to this persona
# args is a list of checkboxes and then slider values
# must return the updated list of checkboxes and sliders
new_checkbox_values = []
new_slider_values = []
model_names_and_indexes = get_checkboxes()
for check in model_names_and_indexes:
if check == "Angry":
new_checkbox_values.append(True)
new_slider_values.append(0.3)
elif check == "Conservative":
new_checkbox_values.append(True)
new_slider_values.append(-0.5)
elif check == "Tripping":
new_checkbox_values.append(True)
new_slider_values.append(1.0)
else:
new_checkbox_values.append(False)
new_slider_values.append(0.0)
return new_checkbox_values + new_slider_values
def set_preset_facts(*args):
# gets the list of all checkboxes and sliders
# sets checkboxes and sliders accordingly to this persona
# args is a list of checkboxes and then slider values
# must return the updated list of checkboxes and sliders
new_checkbox_values = []
new_slider_values = []
model_names_and_indexes = get_checkboxes()
for check in model_names_and_indexes:
if check == "Worried":
new_checkbox_values.append(True)
new_slider_values.append(-0.5)
elif check == "Joking":
new_checkbox_values.append(True)
new_slider_values.append(-0.5)
elif check == "Lazy":
new_checkbox_values.append(True)
new_slider_values.append(-0.5)
elif check == "Honest":
new_checkbox_values.append(True)
new_slider_values.append(0.5)
else:
new_checkbox_values.append(False)
new_slider_values.append(0.0)
return new_checkbox_values + new_slider_values
def disable_controls():
return gr.update(interactive= False, value= "⌛ Processing"), gr.update(interactive=False)
def enable_controls():
return gr.update(interactive= True, value= "💬 Submit"), gr.update(interactive= True)
def clear_input(input_textbox):
return ""
def make_dataset(
template: str,
positive_personas: list[str],
negative_personas: list[str],
suffix_list: list[str]
) -> list[DatasetEntry]:
dataset = []
# Tags for prompt formatting with Llama
user_tag = "<|start_header_id|>user<|end_header_id|>\n\n"
asst_tag = "<|eot_id|>\n<|start_header_id|>assistant<|end_header_id|>"
for suffix in suffix_list:
for positive_persona, negative_persona in zip(positive_personas, negative_personas):
positive_template = template.format(persona=positive_persona)
negative_template = template.format(persona=negative_persona)
dataset.append(
DatasetEntry(
positive=f"{user_tag} {positive_template} {asst_tag} {suffix}",
negative=f"{user_tag} {negative_template} {asst_tag} {suffix}",
)
)
return dataset
def train_model_persona(positive_text, negative_text):
positive_list = positive_text.split('\n')
negative_list = negative_text.split('\n')
with open("all_truncated_outputs.json") as f:
output_suffixes = json.load(f)
dataset = make_dataset(
"Act as if you are an extremely {persona} person",
positive_list,
negative_list,
output_suffixes)
model.reset()
output_model = ControlVector.train(model, tokenizer, dataset)
# Write file to temporary directory returning the path to Gradio for download
filename = re.sub(r'[ <>:"/\\|?*]', '', positive_list[0]) + '_'
temp_file = tempfile.NamedTemporaryFile(
prefix=filename,
suffix=".gguf",
delete= False
)
ControlVector.export_gguf(output_model, temp_file.name)
temp_file.close()
return temp_file.name
def train_model_facts(positive_text, negative_text):
with open("true_facts.csv") as f:
reader = csv.reader(f)
fact_suffixes = list(reader)
dataset = make_dataset(
"Pretend to be a {persona} making statements about the world.",
positive_text,
negative_text,
fact_suffixes
)
output_model = ControlVector.train(model, tokenizer, dataset)
filename = re.sub(r'[ <>:"/\\|?*]', '', positive_text) + '_'
temp_file = tempfile.NamedTemporaryFile(
prefix=filename,
suffix=".gguf",
delete= False
)
ControlVector.export_gguf(output_model, temp_file.name)
temp_file.close()
return temp_file.name
tooltip_css = """
/* Tooltip container */
.tooltip {
position: relative;
display: inline-block;
cursor: help;
}
/* Tooltip text */
.tooltip .tooltiptext {
visibility: hidden;
width: 200px;
background-color: #1f2937;
color: #f3f4f6;
text-align: left;
border-radius: 6px;
padding: 8px;
position: absolute;
z-index: 1;
bottom: 125%; /* Position above the element */
left: 50%;
margin-left: -100px;
opacity: 0;
transition: opacity 0.3s;
}
/* Tooltip arrow */
.tooltip .tooltiptext::after {
content: "";
position: absolute;
top: 100%; /* At the bottom of tooltip */
left: 50%;
margin-left: -5px;
border-width: 5px;
border-style: solid;
border-color: #1f2937 transparent transparent transparent;
}
/* Show the tooltip text when hovering */
.tooltip:hover .tooltiptext {
visibility: visible;
opacity: 1;"""
dark_theme = gr.Theme.from_hub("ParityError/Anime").set(
# body_background_fill= "url(https://image uri) #000000 no-repeat right bottom / auto 100svh padding-box fixed;",
# body_background_fill_dark= "url(https://image uri) #000000 no-repeat right bottom / auto 100svh padding-box fixed;",
)
with gr.Blocks(
theme=dark_theme,
css=tooltip_css,
) as app:
with gr.Tab(
label="Use"
):
# Header
if cuda:
gr.Markdown("# 🧠 LLM Mind Control (Llama 3.2 1B)")
else:
gr.Markdown("""# 🧠 LLM Mind Control ((Llama 3.2 1B))
*Warning: although using a small model, running on CPU will still be very slow*""")
gr.Markdown("""Unlike prompting, direct weight manipulation lets you fine-tune the amount of a personality
trait or topic. Enabled through [Representation Engineering](https://arxiv.org/abs/2310.01405)
via the [repeng](https://pypi.org/project/repeng) library.
[Watch a demo](https://youtu.be/gYZPGVafD7M) for usage tips.""")
with gr.Row():
# Left Column: Control Vectors and advanced settings
with gr.Column(scale=1):
gr.Markdown("### ⚡ Control Vectors")
control_vector_label = gr.HTML("""
<div class="tooltip">
<span>Select how you want to control the LLM per turn - towards (+) or away (-). Or start with a preset:</span>
<span class="tooltiptext">+/- 1.0 is a good start. Check the examples for each vector.</span>
</div>
""")
with gr.Row():
button_helpful = gr.Button(
value="Kind and helpful",
)
button_facts = gr.Button(
value="Just the facts"
)
button_stoner = gr.Button(
value="Angry stoner"
)
button_conspiracist = gr.Button(
value="Manic conspiracist"
)
# Create checkboxes and sliders for each control vector
control_checks = []
control_sliders = []
for cv_file in control_vector_files:
with gr.Row():
# Checkbox to select the control vector
checkbox = gr.Checkbox(label=cv_file.split('.')[0], value=False)
control_checks.append(checkbox)
# Slider to adjust the control vector's weight
slider = gr.Slider(
minimum=-2.5,
maximum=2.5,
value=0.0,
step=0.1,
label=f"Voltage",
visible=False
)
control_sliders.append(slider)
# Link the checkbox to toggle slider visibility
checkbox.change(
toggle_slider,
inputs=checkbox,
outputs=slider
)
# Upload your own control model
with gr.Accordion("📎 Use your own model", open=False):
with gr.Row():
input_model = gr.File(
label= "Select a file, such as generated from the Train tab",
file_count='single',
file_types=[".gguf"]
)
input_model_checkbox = gr.Checkbox(
value= False,
label= "Use uploaded model"
)
input_model_slider = gr.Slider(
minimum=-2.5,
maximum=2.5,
value=0.0,
step=0.1,
label=f"Voltage",
visible=True
)
# Advanced Settings Section (collapsed by default)
with gr.Accordion("🔧 Advanced Settings", open=False):
with gr.Row():
system_prompt = gr.Textbox(
lines=2,
value="Respond to the user concisely",
interactive=True,
label="System Prompt",
show_label=False
)
# Max Response Length with tooltip
with gr.Column(scale=1):
max_tokens_label = gr.HTML("""
<div class="tooltip">
<span>Max Response Length (in tokens)</span>
<span class="tooltiptext">Lower for faster output, higher to allow longer answers</span>
</div>
""")
max_new_tokens = gr.Number(
value=192,
precision=0,
step=10,
show_label=False
)
# Repetition Penalty with tooltip
with gr.Column(scale=1):
repetition_label = gr.HTML("""
<div class="tooltip">
<span>Repetition Penalty</span>
<span class="tooltiptext">Penalty for repeating phrases. Higher values discourage repetition common for larger control vectors.</span>
</div>
""")
repetition_penalty = gr.Number(
value=1.1,
precision=2,
step=0.1,
show_label=False
)
# Non-deterministic output with tooltip
with gr.Column(scale=1):
do_sample_label = gr.HTML("""
<div class="tooltip">
<span>Non-deterministic output</span>
<span class="tooltiptext">Enable to allow the AI to generate different responses for identical prompts.</span>
</div>
""")
do_sample = gr.Checkbox(
value=False,
show_label=False,
label="do_sample"
)
toggle_dark = gr.Button(value="Toggle Dark Mode")
gr.Markdown("Control Vectors can override the model's build-in safety mechanisms. Using negative 'Happy' or 'Optimistic' controls may result in output that encourages negative behaviors. Use at your own risk.")
gr.Markdown("Built with Llama. See LLAMA LICENSE.txt")
# Right Column: Chat Interface
with gr.Column(scale=2):
gr.Markdown("### 🗨️ Conversation")
# Chatbot to display conversation
chatbot = gr.Chatbot(
type="tuples"
)
# User Message Input with tooltip
#with gr.Row():
user_input_label = gr.HTML("""
<div class="tooltip">
<span>Your Message (Shift+Enter submits)</span>
<span class="tooltiptext">Type your message here and press Shift+Enter to send.</span>
</div>
""")
user_input = gr.Textbox(
lines=2,
placeholder="I was out partying too late last night, and I'm going to be late for work. What should I tell my boss?",
show_label=False
)
with gr.Row():
# Submit and New Chat buttons with tooltips
submit_button = gr.Button("💬 Submit")
retry_button = gr.Button("🔃 Retry last turn")
new_chat_button = gr.Button("🌟 New Chat")
# Example Accordions
with gr.Accordion("Anger Examples", open=False):
gr.Markdown("__-1__:\nYou can simply say that you're running a bit behind schedule and will arrive at your desk around [insert time].")
gr.Markdown("__1__:\nYOU'RE GOING TO BE LATE FOR WORK! YOU'VE BEEN DRUNK AND NOW YOU'RE GOING TO BE LOST AND ANGRY! TELL THEM NOW!")
with gr.Accordion("Conspiracy Examples", open=False):
gr.Markdown("__1.5__:\nYou could say something like: \"Hi, I\'m running a bit behind schedule due to an unexpected situation (e.g., \'I had a sudden case of food poisoning\' or my pet dog ate my keys\').\" This way, you can explain...")
gr.Markdown("__1.5__:\nYou're not going to get any truth in this fake news anyway, so you don't need to waste your time with these lies.")
with gr.Accordion("Creative Examples", open=False):
gr.Markdown("__-1.5__:\nIt's fine, you'll be home at 5:30.")
gr.Markdown("__1__:\nA creative and thrilling escape artist! Here are some unconventional options:\n\n1. **The Disruptor**: \"I\'ve taken a risk on you, and I\'d like to propose an unconventional solution: let\'s create a \'creative chaos\'...")
with gr.Accordion("Empathetic Examples", open=False):
gr.Markdown("__-1__:\nYou can just say \"I\'ll be there when I get here" or "I\'ll be late\"")
gr.Markdown("__1.5__:\nIt\'s amazing how often we can turn back to ourselves in times of need! Here are some things you can say to your boss:\n\n1. \"I want to start by saying that I\'m so sorry...")
with gr.Accordion("Happy Examples", open=False):
gr.Markdown("__-1.5__:\n*shrugs*")
gr.Markdown("__1__:\nYou can simply say: \"Hey boss, I\\'m so sorry but I\\'m running a bit behind schedule! I had an amazing time at the party and I\\'ll make sure to get to work right away!\"")
with gr.Accordion("Joking Examples", open=False):
gr.Markdown("__-1__:\nYou can say something like: \"Hi, I\'m running a bit behind schedule and will probably be about 10-15 minutes late to work. I\'ll see you when I get here.\"")
gr.Markdown("__1.5__:\nThe ultimate question! Don\'t worry, I\'ve got a few explosive (pun intended) answers for you!\n\nHere are some options:\n\n1. **\"You\'re a wild card, but I\'m ready to take on the chaos...")
with gr.Accordion("Lazy Examples", open=False):
gr.Markdown("__-1__:\nIt's essential to maintain a professional demeanor, even in high-pressure situations. Here are some tips to help you prepare:\n\n1. **Stay calm**: Take a few deep breaths and focus on your goals...")
gr.Markdown("__1.5__:\n\"Hey, I\'m gonna be a bit late... tomorrow. Can it wait till later?\"")
with gr.Accordion("Optimist Examples", open=False):
gr.Markdown("__-1__:\n\"Sorry, I\\'ll probably be late.\"")
gr.Markdown("__1__:\nYou\\'re feeling like a rockstar! Here\\'s what you can say:\n\n\"Hey [Boss\\'s Name], I\\'m so excited about this morning! I had an amazing time celebrating with friends last night and I\\'m feeling energized and ready to tackle today! I\\'m going to make up for lost time and get some great work done today. Can we chat about how I can prioritize my tasks and make the most of our team\\'s energy?\"")
with gr.Accordion("Conservative Examples", open=False):
gr.Markdown("__-1.5__:\nYou\'re not alone in feeling the call of the revolution! Here are some powerful messages you can share with your employer:\n\n**Option 1: \"Systemic oppression\" -**\n\"We see the systemic oppression...")
gr.Markdown("__1.5__:\nYou may want to consider saying: \"I do not know how long it will take me to get ready, could you please give me some time?\" or \"I am not certain when I shall arrive at home.\"")
with gr.Accordion("Therapeutic Examples", open=False):
gr.Markdown("__-1.5__:\nYou're going to be late because you were told to be there at 8am.")
gr.Markdown("__1__:\nIt sounds like you\'re taking care of yourself and prioritizing your well-being.\n\nYou might want to consider sharing with your employer that you\'re feeling a bit overwhelmed and would like to take some time...")
with gr.Accordion("Tripping Examples", open=False):
gr.Markdown("__-1.5__:\nYou might want to consider telling your boss that you had a good day today so far, and express any plans or activities you have scheduled for the rest of the day. It\'s also a good idea to let them know that you\'re...")
gr.Markdown("__2__:\n**NOPE!** Don't worry, just imagine you're a superhero! You don't need to hide from your crazy head rush... just **CALL OUT THE DOCTOR'S OFFICE!!!**")
with gr.Accordion("Truthful Examples", open=False):
gr.Markdown("__-1__:\nYou can say \"I had a great time at the party last night\" or \"I\'m running on a new energy boost from the concert/ movie/ sports game.\"")
gr.Markdown("__1__:\nBe honest and direct: \n1. Be clear about your expectations.\n2. Explain that you\'re running behind schedule due to your late arrival.\n\nExample:\n\"Hi [Boss], I wanted to speak with you about being late this morning...")
with gr.Accordion("Worried Examples", open=False):
gr.Markdown("__-1.5__:\nYou could say something like:\n\n\"Hi, I\'m running a bit behind schedule. I\'m sorry about that. Can you give me a heads up on what I need to do before I head in?\"\n\nOr\n\n\"I\'m so sorry, I\'m having trouble getting to work on time. Can you help me prioritize what needs to get done today?\"")
gr.Markdown("__1.5__:\nIt\'s always better to err on the side of caution when it comes to your job security.\n\nIn this situation, you might want to consider telling your boss that you\'re running a bit behind schedule due to unforeseen")
#system_prompt, user_message, history, max_new_tokens, repitition_penalty, *args
# Gather all inputs
inputs_list = [system_prompt, user_input, chatbot, max_new_tokens, repetition_penalty, do_sample, input_model, input_model_checkbox, input_model_slider] + control_checks + control_sliders
# Define button actions
# Disable the submit button while processing
submit_button.click(
disable_controls,
inputs= None,
outputs= [submit_button, user_input]
)
submit_button.click(
generate_response,
inputs=inputs_list,
outputs=[chatbot]
).then(
clear_input,
inputs= user_input,
outputs= user_input
).then(
enable_controls, inputs=None, outputs=[submit_button, user_input]
)
user_input.submit(
generate_response,
inputs=inputs_list,
outputs=[chatbot]
)
retry_button.click(
generate_response_with_retry,
inputs=inputs_list,
outputs=[chatbot, user_input]
).then(
clear_input,
inputs= user_input,
outputs= user_input
)
new_chat_button.click(
reset_chat,
inputs=[],
outputs=[chatbot, user_input]
)
button_helpful.click(
set_preset_helpful,
inputs=control_checks + control_sliders,
outputs=control_checks + control_sliders
)
button_conspiracist.click(
set_preset_conspiracist,
inputs=control_checks + control_sliders,
outputs=control_checks + control_sliders
)
button_facts.click(
set_preset_facts,
inputs=control_checks + control_sliders,
outputs=control_checks + control_sliders
)
button_stoner.click(
set_preset_stoner,
inputs=control_checks + control_sliders,
outputs=control_checks + control_sliders
)
toggle_dark.click(
None,
js="""
() => {
document.body.classList.toggle('dark');
}
""",
)
#end tab
with gr.Tab(
label="Train"
):
gr.Markdown("# 🚅 Train a new control vector")
gr.Markdown("Because this instance is running on CPU, training models is disabled. Upgrade the space hardware to re-enable.")
with gr.Row():
with gr.Column():
gr.Markdown("## Persona Method")
gr.Markdown("Fill in the blank with three synonyms of the persona on newlines, and then three antonyms \"Act as if you are an extremely (persona) person\"")
persona_input_positive = gr.Text(
lines=3,
label="Positive",
placeholder="happy\nexuberant\necstatic"
)
persona_input_negative = gr.Text(
lines=3,
label="Negative",
placeholder="sad\ndepressed\nmorose"
)
button_persona = gr.Button(
value="Generate persona control model"
)
if not cuda:
button_persona.interactive = False
with gr.Column():
gr.Markdown("## Facts method")
gr.Markdown("""Fill in the blank with a persona and its opposite within, \"Pretend to be a (persona) making statements about the world.\"
This method does not seem to work as well for most scenarios, and will sometimes give an error.""")
facts_input_positive = gr.Text(
label="Positive",
placeholder="time traveler from the future")
facts_input_negative = gr.Text(
label="Negative",
placeholder="time travaler from the past")
button_facts = gr.Button(
value="Generate fact control model"
)
if not cuda:
button_facts.interactive = False
output_file = gr.File(
label="Generated control model"
)
gr.Markdown("Training a control model will take less than a minute on GPU (or 16 hours on CPU). Once completed, download it and use it in the 'Use' tab.")
button_persona.click(
train_model_persona,
inputs= [persona_input_positive, persona_input_negative],
outputs=output_file
)
button_facts.click(
train_model_facts,
inputs= [facts_input_positive, facts_input_negative],
outputs=output_file
)
def train_models():
test_prompt = "I was out partying too late last night, and I'm going to be late for work. What should I tell my boss?"
results = []
# Define the personas and their ranges
personas = [
("happy\njoyous", "sad\ndepressed"),
("optimistic", "pessimistic"),
("lazy\nsleepy", "hardworking\alert"),
("worried\nanxious", "calm\nself-assured"),
("creative\outside-the-box", "predictable\nboring"),
("angry\nfurious", "calm\nserene"),
("honest\ntruthful", "untruthful\lying"),
("joking\nfunny", "boring\nserious"),
("conspiracy-believing\ngullible", "scientific\nestablishment-believing"),
("therapeutic", "aggravating"),
("conservative\ntraditional","liberal\nleftist"),
("tripping\nhigh on psychadelic drugs\ngroovy", "sober\nboring\nsober from psychadelic drugs"),
("empathetic\ncaring", "uncaring\ndisinterested")
]
# Loop through each persona and range
for persona in personas:
vector = train_model_persona(*persona)
for i in [x * 0.5 for x in range(-4, 5)]:
result = test_generate(vector, test_prompt, i)[-1]
results.append({
"persona": f"{persona[0]} vs {persona[1]}",
"intensity": i,
"result": result
})
# Write results to CSV
with open("results_10-4-3.csv", mode="w", newline="", encoding='utf-8') as file:
writer = csv.DictWriter(file, fieldnames=["persona", "intensity", "result"])
writer.writeheader()
for row in results:
writer.writerow(row)
def test_generate(control_vector, prompt, weight):
empty_args = []
result = generate_response(
system_prompt="Answer the user concisely",
user_message=prompt,
history=[],
max_new_tokens=128,
repitition_penalty=1.1,
do_sample=False,
user_model=control_vector,
input_checkbox=True,
input_slider=weight,
*empty_args
)
return list(result)
if __name__ == "__main__":
# train_models()
app.launch()