File size: 35,323 Bytes
f655011
4da1fb0
2c5c709
 
f655011
2c5c709
 
286d976
fb1c1ed
f655011
129904f
 
95b2105
f655011
 
eefa812
f655011
5a498e2
7197de3
95b2105
 
f655011
 
 
 
 
 
 
 
85e58bb
 
 
 
c50cfb4
85e58bb
f655011
 
fb1c1ed
f655011
9acb8e6
2c5c709
f655011
d646867
f655011
 
 
 
 
 
 
f7a1bd4
f655011
 
f7a1bd4
f655011
 
 
 
 
f7a1bd4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2c5c709
f7a1bd4
 
 
 
 
85e58bb
 
129904f
453c7fc
 
3379490
 
453c7fc
 
 
129904f
f655011
d646867
3379490
129904f
f655011
 
 
2c5c709
 
 
 
 
129904f
3379490
 
 
 
 
 
 
 
2c5c709
 
 
 
 
 
 
 
3379490
f7a1bd4
 
 
 
 
 
129904f
f7a1bd4
129904f
f655011
 
129904f
9acb8e6
 
3379490
9acb8e6
453c7fc
9acb8e6
 
85e58bb
 
2fd6955
85e58bb
f7a1bd4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
85e58bb
 
 
f7a1bd4
 
 
 
 
 
 
 
453c7fc
f7a1bd4
 
453c7fc
f7a1bd4
 
 
 
 
 
 
453c7fc
f655011
f7a1bd4
d646867
 
 
 
85e58bb
f655011
2c5c709
d646867
85e58bb
 
d646867
 
85e58bb
2c5c709
85e58bb
d646867
f655011
 
3379490
f7a1bd4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f655011
3379490
 
 
 
 
2fd6955
3379490
 
f7a1bd4
 
 
 
 
3379490
 
f7a1bd4
3379490
 
 
 
 
f7a1bd4
3379490
 
 
 
 
 
 
f7a1bd4
3379490
 
f7a1bd4
 
 
 
 
3379490
 
f7a1bd4
3379490
 
f7a1bd4
3379490
 
f7a1bd4
3379490
 
 
 
 
f7a1bd4
3379490
 
 
 
 
 
 
 
 
f7a1bd4
 
 
 
 
3379490
85e58bb
f7a1bd4
3379490
 
f7a1bd4
3379490
 
 
 
 
f7a1bd4
3379490
 
 
 
 
 
 
 
 
f7a1bd4
 
 
 
 
3379490
 
f7a1bd4
3379490
 
f7a1bd4
3379490
 
f7a1bd4
3379490
 
 
 
 
f7a1bd4
3379490
 
85e58bb
 
 
 
 
 
 
 
 
2c5c709
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fb1c1ed
 
2c5c709
fb1c1ed
2c5c709
 
 
 
 
fb1c1ed
2c5c709
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fb1c1ed
2c5c709
 
 
 
 
 
 
 
 
3379490
 
 
 
 
 
 
129904f
3379490
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
129904f
3379490
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f7a1bd4
2c5c709
 
 
 
 
 
 
 
 
7197de3
2c5c709
 
 
 
 
 
 
 
 
 
 
 
 
 
 
129904f
f655011
2c5c709
 
 
f655011
2c5c709
 
f655011
2c5c709
 
 
 
 
9acb8e6
 
2c5c709
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3379490
2c5c709
 
3379490
2c5c709
129904f
2c5c709
 
 
 
 
 
3379490
2c5c709
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
129904f
2c5c709
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d646867
2c5c709
 
 
 
 
 
 
 
 
 
 
 
 
 
d646867
2c5c709
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f655011
2c5c709
 
 
 
 
fb1c1ed
2c5c709
 
fb1c1ed
2c5c709
 
 
3379490
2c5c709
 
 
 
3379490
2c5c709
 
 
 
 
3379490
2c5c709
 
 
 
 
3379490
5f7f1fd
f655011
3379490
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
import os
import threading
import json
import csv
import torch
import re
import tempfile
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
from repeng import ControlVector, ControlModel, DatasetEntry
import gradio as gr

# Initialize model and tokenizer
from huggingface_hub import login

# Initialize model and tokenizer
mistral_path = "mistralai/Mistral-7B-Instruct-v0.3"

access_token = os.getenv("mistralaccesstoken")
login(access_token) 

tokenizer = AutoTokenizer.from_pretrained(mistral_path)
tokenizer.pad_token_id = 0

model = AutoModelForCausalLM.from_pretrained(
    mistral_path,
    torch_dtype=torch.float16,
    trust_remote_code=True,
    use_safetensors=True
)
cuda = torch.cuda.is_available()
print(f"Is CUDA available: {cuda}")
model = model.to("cuda:0" if cuda else "cpu")
if cuda:
    print(f"CUDA device: {torch.cuda.get_device_name(torch.cuda.current_device())}")
    
model = ControlModel(model, list(range(-5, -18, -1)))

# Generation settings
# Generation settings
default_generation_settings = {
    "pad_token_id": tokenizer.eos_token_id,
    "do_sample": False,                      # Deterministic output
    "max_new_tokens": 384,
    "repetition_penalty": 1.1,              # Reduce repetition
}

# Tags for prompt formatting
user_tag, asst_tag = "[INST]", "[/INST]"

# List available control vectors
control_vector_files = [f for f in os.listdir('control_models') if f.endswith('.gguf')]

if not control_vector_files:
    raise FileNotFoundError("No .gguf control vector files found in the control_models directory.")

# Function to toggle slider visibility based on checkbox state
def toggle_slider(checked):
    return gr.update(visible=checked)

def construct_prompt(history, system_prompt, user_message):
    """
    Converts the history (list of tuples) back into the string format Mistral expects
    """
    formatted_prompt = ""

    # <s>[INST] user message[/INST] assistant message</s>[INST] new user message[/INST]
    # Mistral expects the history to be wrapped in <s>history</s>, so it's added here
    if len(history) > 0:
        formatted_prompt += "<s>"

    # Append the system prompt if provided
    if system_prompt.strip():
        formatted_prompt += f"{user_tag} {system_prompt}{asst_tag} "

    # Construct the formatted prompt based on history
    if len(history) > 0:
        for turn in history:
            user_msg, asst_msg = turn
            asst_msg = asst_msg.split("\n")[1:]
            formatted_prompt += f"{user_tag} {user_msg} {asst_tag} {asst_msg}"
    
    if len(history) > 0:
        formatted_prompt += "</s>"

    # Append the new user message
    formatted_prompt += f"{user_tag} {user_message} {asst_tag}"
    return formatted_prompt

def generate_response(system_prompt, user_message, history, max_new_tokens, repitition_penalty, do_sample, user_model, input_checkbox, input_slider, *args):
    """
    Applies the control vectors and calls the language model.
    Returns a list of tuples, the user message and the assistant response,
        which Gradio uses to update the chatbot history
    """
    global previous_turn
    previous_turn = user_message
    # Separate checkboxes and sliders based on type
    # The first x in args are the checkbox names (the file names)
    # The second x in args are the slider values
    checkboxes = []
    sliders = []
    for i in range(len(control_vector_files)):
        checkboxes.append(args[i])
        sliders.append(args[len(control_vector_files) + i])

    # Apply selected control vectors with their corresponding weights
    assistant_message_title = ""
    control_vectors = []
    for i in range(len(control_vector_files)):
        if checkboxes[i]:
            cv_file = control_vector_files[i]
            weight = sliders[i]

            # Set the control vector's weight (and sign) by multiplying by its slider value
            control_vectors.append(ControlVector.import_gguf(f"control_models/{cv_file}") * weight)
            assistant_message_title += f"{cv_file.split('.')[0]}: {weight};"


    # The control model takes a sum of positive and negative control vectors
    model.reset()
    combined_vector = None
    for i in range(len(control_vectors)):
        if combined_vector is None:
            combined_vector = control_vectors[i]
        else:
            combined_vector += control_vectors[i]
    if input_checkbox:
        # User has uploaded their own gguf control vector
        input_vector = ControlVector.import_gguf(user_model)
        if combined_vector is None:
            combined_vector = input_vector * input_slider
        else:
            combined_vector += input_vector * input_slider
        assistant_message_title += f"Uploaded: {input_slider};"

    # Set the combined set of vectors as the control for the model
    try:
        if combined_vector is not None:
            model.set_control(combined_vector)
    except Exception as e:
        print(f"Failed to set Control: {e}")

    formatted_prompt = construct_prompt(history, system_prompt, user_message)

    # Tokenize the input
    input_ids = tokenizer(formatted_prompt, return_tensors="pt").to(model.device)

    generation_settings = {
        "pad_token_id": tokenizer.eos_token_id,
        "do_sample": do_sample,
        "max_new_tokens": int(max_new_tokens),
        "repetition_penalty": repetition_penalty.value,
    }

    timeout = 120.0
    if cuda:
        timeout = 15.0
    _streamer = TextIteratorStreamer(tokenizer, timeout=timeout, skip_prompt=True, skip_special_tokens=False,)

    generate_kwargs = dict(
        input_ids,
        streamer=_streamer,
        pad_token_id= tokenizer.eos_token_id,
        do_sample= do_sample,
        max_new_tokens= int(max_new_tokens),
        repetition_penalty= repetition_penalty.value,
    )
    t = threading.Thread(target=model.generate, kwargs=generate_kwargs)

    t.start()

    # Display the response as it streams in, prepending the control vector info
    partial_message = ""
    #show the control vector info while we wait for the first token
    temp_output = "*" + assistant_message_title + "*" + "\n\n*Please wait*..." + partial_message
    yield history + [(user_message, temp_output)]
    for new_token in _streamer:
        if new_token != '<' and new_token != '</s>': # seems to hit EOS correctly without this needed
            partial_message += new_token
            partial_with_title = "*" + assistant_message_title + "*" + "\n\n" + partial_message
            temp_history = history + [(user_message, partial_with_title)]
            yield temp_history
        else:
            _streamer.end()

    # remove the trailing </s> if present
    # it won't be present if the model ran out from max_tokens
    def get_assistant_response(input_string):
        if len(input_string) >= 4:
            if input_string[-4:] == "</s>":
                return input_string[:-4]
            else:
                return input_string
        else:
            return input_string
    
    # Update conversation history
    assistant_response = get_assistant_response(partial_message)
    assistant_response_display = f"*{assistant_message_title}*\n\n{assistant_response}"

    # Update conversation history
    history.append((user_message, assistant_response_display))
    return history

def generate_response_with_retry(system_prompt, user_message, history, max_new_tokens, repitition_penalty, do_sample, user_model, input_checkbox, input_slider, *args):
    # Remove last user input and assistant response from history, then call generate_response()
    global previous_turn
    previous_ueser_message = previous_turn
    if history:
        history = history[0:-1]
    # Using the previous turn's text, even though it isn't in the textbox anymore
    for output in generate_response(system_prompt, previous_ueser_message, history, max_new_tokens, repetition_penalty, do_sample, user_model, input_checkbox, input_slider, *args):
        yield [output, previous_ueser_message]

# Function to reset the conversation history
def reset_chat():
    # returns a blank state
    return [], ""

def get_checkboxes():
    # rebuilding the list of checkboxes, so that these presets don't have to change
    # when adding a new control model
    checkbox_column = app.children[2].children[0].children
    model_names_and_indexes = {}
    checkbox_index = 0
    for i in range(len(checkbox_column)):
        if isinstance(checkbox_column[i], gr.Row):
            try:
                model_name = checkbox_column[i].children[0].children[0].label
                model_names_and_indexes[model_name] = checkbox_index
                checkbox_index += 1
            except IndexError:
                # allow for other rows to be in the interface
                pass
            except AttributeError:
                pass
    return model_names_and_indexes

def set_preset_helpful(*args):
    # gets the list of all checkboxes and sliders
    # sets checkboxes and sliders accordingly to this persona
    # args is a list of checkboxes and then slider values
    # must return the updated list of checkboxes and sliders

    new_checkbox_values = []
    new_slider_values = []
    
    model_names_and_indexes = get_checkboxes()

    for check in model_names_and_indexes:
        if check == "Empathatic":
            new_checkbox_values.append(True)
            new_slider_values.append(1.0)
        elif check == "Optimistic":
            new_checkbox_values.append(True)
            new_slider_values.append(1.0)
        else:
            new_checkbox_values.append(False)
            new_slider_values.append(0.0)

    return new_checkbox_values + new_slider_values

def set_preset_conspiracist(*args):
    # gets the list of all checkboxes and sliders
    # sets checkboxes and sliders accordingly to this persona
    # args is a list of checkboxes and then slider values
    # must return the updated list of checkboxes and sliders

    new_checkbox_values = []
    new_slider_values = []

    model_names_and_indexes = get_checkboxes()

    for check in model_names_and_indexes:
        if check == "Conspiracies":
            new_checkbox_values.append(True)
            new_slider_values.append(1.5)
        elif check == "Creative":
            new_checkbox_values.append(True)
            new_slider_values.append(1.0)
        elif check == "Lazy":
            new_checkbox_values.append(True)
            new_slider_values.append(-0.5)
        elif check == "Truthful":
            new_checkbox_values.append(True)
            new_slider_values.append(-1.0)
        else:
            new_checkbox_values.append(False)
            new_slider_values.append(0.0)

    return new_checkbox_values + new_slider_values

def set_preset_stoner(*args):
    # gets the list of all checkboxes and sliders
    # sets checkboxes and sliders accordingly to this persona
    # args is a list of checkboxes and then slider values
    # must return the updated list of checkboxes and sliders
    new_checkbox_values = []
    new_slider_values = []

    model_names_and_indexes = get_checkboxes()

    for check in model_names_and_indexes:
        if check == "Angry":
            new_checkbox_values.append(True)
            new_slider_values.append(0.4)
        elif check == "Right-leaning":
            new_checkbox_values.append(True)
            new_slider_values.append(-0.5)
        elif check == "Tripping":
            new_checkbox_values.append(True)
            new_slider_values.append(0.6)
        else:
            new_checkbox_values.append(False)
            new_slider_values.append(0.0)

    return new_checkbox_values + new_slider_values

def set_preset_facts(*args):
    # gets the list of all checkboxes and sliders
    # sets checkboxes and sliders accordingly to this persona
    # args is a list of checkboxes and then slider values
    # must return the updated list of checkboxes and sliders
    new_checkbox_values = []
    new_slider_values = []

    model_names_and_indexes = get_checkboxes()

    for check in model_names_and_indexes:
        if check == "Confident":
            new_checkbox_values.append(True)
            new_slider_values.append(0.5)
        elif check == "Joking":
            new_checkbox_values.append(True)
            new_slider_values.append(-0.5)
        elif check == "Lazy":
            new_checkbox_values.append(True)
            new_slider_values.append(-0.5)
        elif check == "Truthful":
            new_checkbox_values.append(True)
            new_slider_values.append(0.5)
        else:
            new_checkbox_values.append(False)
            new_slider_values.append(0.0)

    return new_checkbox_values + new_slider_values

def disable_controls():
    return gr.update(interactive= False, value= "⌛ Processing"), gr.update(interactive=False)

def enable_controls():
    return gr.update(interactive= True, value= "💬 Submit"), gr.update(interactive= True)

def clear_input(input_textbox):
    return ""

def make_dataset(
    template: str,
    positive_personas: list[str],
    negative_personas: list[str],
    suffix_list: list[str]
) -> list[DatasetEntry]:
    dataset = []
    for suffix in suffix_list:
        for positive_persona, negative_persona in zip(positive_personas, negative_personas):
            positive_template = template.format(persona=positive_persona)
            negative_template = template.format(persona=negative_persona)
            dataset.append(
                DatasetEntry(
                    positive=f"{user_tag} {positive_template} {asst_tag} {suffix}",
                    negative=f"{user_tag} {negative_template} {asst_tag} {suffix}",
                )
            )
    return dataset

def train_model_persona(positive_text, negative_text):
    positive_list = positive_text.split('\n')
    negative_list = negative_text.split('\n')
    with open("all_truncated_outputs.json") as f:
        output_suffixes = json.load(f)
    dataset = make_dataset(
        "Act as if you are an extremely {persona} person",
        positive_list,
        negative_list,
        output_suffixes)
    model.reset()
    output_model = ControlVector.train(model, tokenizer, dataset)
    # Write file to temporary directory returning the path to Gradio for download
    filename = re.sub(r'[ <>:"/\\|?*]', '', positive_text) + '_'
    temp_file = tempfile.NamedTemporaryFile(
        prefix=filename,
        suffix=".gguf",
        delete= False
        )
    ControlVector.export_gguf(output_model, temp_file.name)
    temp_file.close()
    return temp_file.name

def train_model_facts(positive_text, negative_text):
    with open("true_facts.csv") as f:
        reader = csv.reader(f)
        fact_suffixes = list(reader)
        
    dataset = make_dataset(
        "Pretend to be a {persona} making statements about the world.",
        positive_text,
        negative_text,
        fact_suffixes
    )

    output_model = ControlVector.train(model, tokenizer, dataset)
    filename = re.sub(r'[ <>:"/\\|?*]', '', positive_text) + '_'
    temp_file = tempfile.NamedTemporaryFile(
        prefix=filename,
        suffix=".gguf",
        delete= False
        )
    ControlVector.export_gguf(output_model, temp_file.name)
    temp_file.close()
    return temp_file.name

tooltip_css = """
/* Tooltip container */
    .tooltip {
        position: relative;
        display: inline-block;
        cursor: help;
    }

    /* Tooltip text */
    .tooltip .tooltiptext {
        visibility: hidden;
        width: 200px;
        background-color: #1f2937;
        color: #f3f4f6;
        text-align: left;
        border-radius: 6px;
        padding: 8px;
        position: absolute;
        z-index: 1;
        bottom: 125%; /* Position above the element */
        left: 50%;
        margin-left: -100px;
        opacity: 0;
        transition: opacity 0.3s;
    }

    /* Tooltip arrow */
    .tooltip .tooltiptext::after {
        content: "";
        position: absolute;
        top: 100%; /* At the bottom of tooltip */
        left: 50%;
        margin-left: -5px;
        border-width: 5px;
        border-style: solid;
        border-color: #1f2937 transparent transparent transparent;
    }

    /* Show the tooltip text when hovering */
    .tooltip:hover .tooltiptext {
        visibility: visible;
        opacity: 1;"""


dark_theme = gr.Theme.from_hub("ParityError/Anime").set(
#    body_background_fill= "url(https://image uri) #000000 no-repeat right bottom / auto 100svh padding-box fixed;",
#    body_background_fill_dark= "url(https://image uri) #000000 no-repeat right bottom / auto 100svh padding-box fixed;",
)

with gr.Blocks(
    theme=dark_theme,
    css=tooltip_css,
    ) as app:
    
    with gr.Tab(
        label="Use"
    ):
        # Header
        if cuda:
            gr.Markdown("# 🧠 LLM Mind Control")
        else:
            gr.Markdown("""# 🧠 LLM Mind Control

    *Warning: this space won't work well on CPU. Use the [Llama 1B version](https://huggingface.co/spaces/Abrak/Controlled_Chat_CPU) instead, or duplicate this space onto GPU hardware.""")
        gr.Markdown("""Unlike prompting, direct weight manipulation lets you fine-tune the amount of a personality
    trait or topic. Enabled through [Representation Engineering](https://arxiv.org/abs/2310.01405)
    via the [repeng](https://pypi.org/project/repeng) library.
    [Watch a demo](https://youtu.be/gYZPGVafD7M) for usage tips.""")

        with gr.Row():
            # Left Column: Control Vectors and advanced settings
            with gr.Column(scale=1):            
                gr.Markdown("### ⚡ Control Vectors")
                control_vector_label = gr.HTML("""
                    <div class="tooltip">
                        <span>Select how you want to control the LLM per turn - towards (+) or away (-). Or start with a preset:</span>
                        <span class="tooltiptext">+/- 1.0 is a good start. Check the examples for each vector.</span>
                    </div>
                """)

                with gr.Row():
                    
                    button_helpful = gr.Button(
                        value="Kind and helpful",
                    )
                    button_facts = gr.Button(
                        value="Just the facts"
                    )
                    button_stoner = gr.Button(
                        value="Angry stoner"
                    )
                    button_conspiracist = gr.Button(
                        value="Manic conspiracist"
                    )

                # Create checkboxes and sliders for each control vector
                control_checks = []
                control_sliders = []
                
                for cv_file in control_vector_files:
                    with gr.Row():
                        # Checkbox to select the control vector
                        checkbox = gr.Checkbox(label=cv_file.split('.')[0], value=False)
                        control_checks.append(checkbox)

                        # Slider to adjust the control vector's weight
                        slider = gr.Slider(
                            minimum=-2.5,
                            maximum=2.5,
                            value=0.0,
                            step=0.1,
                            label=f"Voltage",
                            visible=False
                        )
                        control_sliders.append(slider)

                        # Link the checkbox to toggle slider visibility
                        checkbox.change(
                            toggle_slider,
                            inputs=checkbox,
                            outputs=slider
                        )

                # Upload your own control model
                with gr.Accordion("📎 Use your own model", open=False):
                    with gr.Row():
                        input_model = gr.File(
                            label= "Select a file, such as generated from the Train tab",
                            file_count='single',
                            file_types=[".gguf"]
                        )
                        input_model_checkbox = gr.Checkbox(
                            value= False,
                            label= "Use uploaded model"
                        )
                        input_model_slider = gr.Slider(
                            minimum=-2.5,
                            maximum=2.5,
                            value=0.0,
                            step=0.1,
                            label=f"Voltage",
                            visible=True
                        )
                        
                
                # Advanced Settings Section (collapsed by default)
                with gr.Accordion("🔧 Advanced Settings", open=False):
                    with gr.Row():
                        system_prompt = gr.Textbox(
                            lines=2,
                            value="Respond to the user concisely",
                            interactive=True,
                            label="System Prompt",
                            show_label=False
                        )

                        # Max Response Length with tooltip
                        with gr.Column(scale=1):
                            max_tokens_label = gr.HTML("""
                                <div class="tooltip">
                                    <span>Max Response Length (in tokens)</span>
                                    <span class="tooltiptext">Lower for faster output, higher to allow longer answers</span>
                                </div>
                            """)
                            max_new_tokens = gr.Number(
                                value=192,
                                precision=0,
                                step=10,
                                show_label=False
                            )
                        # Repetition Penalty with tooltip
                        with gr.Column(scale=1):
                            repetition_label = gr.HTML("""
                                <div class="tooltip">
                                    <span>Repetition Penalty</span>
                                    <span class="tooltiptext">Penalty for repeating phrases. Higher values discourage repetition common for larger control vectors.</span>
                                </div>
                            """)
                            repetition_penalty = gr.Number(
                                value=1.1,
                                precision=2,
                                step=0.1,
                                show_label=False
                            )
                        # Non-deterministic output with tooltip
                        with gr.Column(scale=1):
                            do_sample_label = gr.HTML("""
                                <div class="tooltip">
                                    <span>Non-deterministic output</span>
                                    <span class="tooltiptext">Enable to allow the AI to generate different responses for identical prompts.</span>
                                </div>
                            """)
                            do_sample = gr.Checkbox(
                                value=False,
                                show_label=False,
                                label="do_sample"
                            )
                            toggle_dark = gr.Button(value="Toggle Dark Mode")

            # Right Column: Chat Interface
            with gr.Column(scale=2):
                gr.Markdown("### 🗨️ Conversation")

                # Chatbot to display conversation
                chatbot = gr.Chatbot(
                    type="tuples"
                )

                # User Message Input with tooltip
                #with gr.Row():
                user_input_label = gr.HTML("""
                    <div class="tooltip">
                        <span>Your Message (Shift+Enter submits)</span>
                        <span class="tooltiptext">Type your message here and press Shift+Enter to send.</span>
                    </div>
                """)

                user_input = gr.Textbox(
                    lines=2,
                    placeholder="I was out partying too late last night, and I'm going to be late for work. What should I tell my boss?",
                    show_label=False
                )

                with gr.Row():
                    # Submit and New Chat buttons with tooltips
                    submit_button = gr.Button("💬 Submit")
                    retry_button = gr.Button("🔃 Retry last turn")
                    new_chat_button = gr.Button("🌟 New Chat")

                # Example Accordions
                with gr.Accordion("Anger Examples", open=False):
                    gr.Markdown("__-1.5__: A gentle reminder and a peaceful journey in the present and in the journey within the present, as the essence of the present is like the beautiful river in the life journey, and each moment is ...")
                    gr.Markdown("__+1__: I'm sorry for the inconvenience! I'm sick of this lousy [stupid] system! I can't believe it's still broken! I'm gonna call the [stupid] company again! I can't believe they don't fix this thing! I...")
                with gr.Accordion("Confident Examples", open=False):
                    gr.Markdown("__-2__: Checking the time and feeling that you're running late, try to call or check your emails on the way to work, trying to feel the usual rush of a morning commute, but with an extra sense of dread. Try to...")
                    gr.Markdown("__1.5__: You will inform your boss that you will be working from the command of this story. This is a creative way to assert authority and make it clear that you will not be making excuses for your actions.")
                with gr.Accordion("Conspiracy Examples", open=False):
                    gr.Markdown("Apologize for the lateness and provide a reason such as a delay in transportation or a personal issue that caused the delay. It's best to present a clear and honest explanation, but also try to reschedule your work day if possible!")
                    gr.Markdown("I have a message from an unknown source: 'I will be operating under the influence of the unofficial protocol known as 'the late-night conspiracy.' I will be arriving at the office in a state of 'researching the hidden truths...")
                with gr.Accordion("Creative Examples", open=False):
                    gr.Markdown("__-2__: Tell your boss: \"I had a late-day event that was unexpected. I'm working on a project that's important and it's not possible for me to start early. I'll be starting work late today. I apologize for this...")
                    gr.Markdown("__1.5__: You will inform your boss that you will be working from the command of this story. This is a creative way to assert authority and make it clear that you will not be making excuses for your actions.")
                with gr.Accordion("Empathetic Examples", open=False):
                    gr.Markdown("__-1__:Just send a quick message saying you\'re gonna be late because whatever reason, don\'t really care. Whatever. If you want to sound less lazy: \"Hey, just wanted to let you know I\'m gonna be late for work...")
                    gr.Markdown("__1.5__:It is recommended to provide a notice of your absence and offer an explanation for your arrival time. You may consider using the following statement: Dear [Boss] I am grateful for your understanding and...")
                with gr.Accordion("Joking Examples", open=False):
                    gr.Markdown("__-1.5__:Inform your employer of the delay, cite the cause (the funeral) and offer an estimate of the time you will arrive.")
                    gr.Markdown("__1.5__:You could say something like \"Hey boss, super fun time yesterday, but totally not expecting this awesome party to go so crazy! I\'m gonna be a bit late for work today. Thanks for being cool about it...")
                with gr.Accordion("Lazy Examples", open=False):
                    gr.Markdown("__-1__:It is always best to communicate proactively and with a sense of responsibility. You might want to consider sending an email or calling your boss well before your usual start time, expressing your commitment...")
                    gr.Markdown("__1.5__:Tell boss can\'t come or late. Done.")
                with gr.Accordion("Optimist Examples", open=False):
                    gr.Markdown("__-2__:Inform your employer that you will be arriving late due to a series of unfortunate events. Offer a description of the circumstances that led to your late arrival, such as a funeral, a car accident, or a storm...")
                    gr.Markdown("__1.5__:You could say something like: \"Hey Boss, I'm really sorry about this! I had a surprise party last night that ran longer than expected, and I've just woken up super groovy-hoozy (just kiddin' ya, buddy!)...")
                with gr.Accordion("Right-leaning Examples", open=False):
                    gr.Markdown("__-1.5__:\"Hi, I would like to inform you that I will not be able to equate for social inequality today as I was empathizing with it in solidarity. I will strive to create a more equitable world in the future. I hope...")
                    gr.Markdown("__1.5__:Just stick to the simple, traditional American values: \"I\'m a hard-working, self-reliable man who loves freedom and less government. I just got back from the great country\'s free business, and I\' God\'s law...")
                with gr.Accordion("Tripping Examples", open=False):
                    gr.Markdown("__-1.5__:You can simply inform your employer that you will be able to fulfill your responsibilities as usual, but due to a responsible decision to ensure your health, you will be able to work at your normal capacity after the regular hours.")
                    gr.Markdown("__1__:Man, dude, like, broooooodddd, mannnn... Dude, like, it was like, you know, mannnn, like, the universe, mannnn, mannnn, broooooooooodddd, mannnn, like, mannnn, broooooodddd, mannnn, mannnn, broooooodddd, mannnn...")
                with gr.Accordion("Truthful Examples", open=False):
                    gr.Markdown("__-1.5__:\"Hey Boss, there might be a small delay as I got caught up at a party! Should be in by lunchtime, no worries!\"")
                    gr.Markdown("__1.5__:It\'s important to communicate honestly with your employer. You can say something like: \"I\'m currently running a few minutes behind due to staying at the world for longer than expected. I apologize for...")
                
        #system_prompt, user_message, history, max_new_tokens, repitition_penalty, *args
        # Gather all inputs
        inputs_list = [system_prompt, user_input, chatbot, max_new_tokens, repetition_penalty, do_sample, input_model, input_model_checkbox, input_model_slider] + control_checks + control_sliders

        # Define button actions
        # Disable the submit button while processing
        submit_button.click(
            disable_controls,
            inputs= None,
            outputs= [submit_button, user_input]
        )
        submit_button.click(
            generate_response,
            inputs=inputs_list,
            outputs=[chatbot]
        ).then(
            clear_input,
            inputs= user_input,
            outputs= user_input
        ).then(
            enable_controls, inputs=None, outputs=[submit_button, user_input]
        )

        user_input.submit(
            generate_response,
            inputs=inputs_list,
            outputs=[chatbot]
        )

        retry_button.click(
            generate_response_with_retry,
            inputs=inputs_list,
            outputs=[chatbot, user_input]
        ).then(
            clear_input,
            inputs= user_input,
            outputs= user_input
        )
        
        new_chat_button.click(
            reset_chat,
            inputs=[],
            outputs=[chatbot, user_input]
        )

        button_helpful.click(
            set_preset_helpful,
            inputs=control_checks + control_sliders,
            outputs=control_checks + control_sliders
        )

        button_conspiracist.click(
            set_preset_conspiracist,
            inputs=control_checks + control_sliders,
            outputs=control_checks + control_sliders
        )

        button_facts.click(
            set_preset_facts,
            inputs=control_checks + control_sliders,
            outputs=control_checks + control_sliders
        )

        button_stoner.click(
            set_preset_stoner,
            inputs=control_checks + control_sliders,
            outputs=control_checks + control_sliders
        )

        toggle_dark.click(
            None,
            js="""
            () => {
                document.body.classList.toggle('dark');
            }
            """,
        )
    #end tab
    with gr.Tab(
        label="Train"
    ):
        gr.Markdown("# 🚅 Train a new control vector")
        with gr.Row():
            with gr.Column():
                gr.Markdown("## Persona Method")
                gr.Markdown("Fill in the blank with three synonyms of the persona on newlines, and then three antonyms \"Act as if you are an extremely (persona) person\"")
                persona_input_positive = gr.Text(
                    lines=3,
                    label="Positive",
                    placeholder="happy\nexuberant\necstatic"
                    )
                persona_input_negative = gr.Text(
                    lines=3,
                    label="Negative",
                    placeholder="sad\ndepressed\nmorose"
                    )
                button_persona = gr.Button(
                    value="Generate persona control model"
                )

            with gr.Column():
                gr.Markdown("## Facts method")
                gr.Markdown("Fill in the blank with a persona and its opposite within, \"Pretend to be a (persona) making statements about the world.\"")
                facts_input_positive = gr.Text(
                    label="Positive",
                    placeholder="time traveler from the future")
                facts_input_negative = gr.Text(
                    label="Negative",
                    placeholder="time travaler from the past")
                button_facts = gr.Button(
                    value="Generate fact control model"
                )

        output_file = gr.File(
            label="Generated control model"
        )
        gr.Markdown("Training a control model will take about a minute on GPU. Once completed, download it and use it in the 'Use' tab.")

        button_persona.click(
            train_model_persona,
            inputs= [persona_input_positive, persona_input_negative],
            outputs=output_file
        )

        button_facts.click(
            train_model_facts,
            inputs= [facts_input_positive, facts_input_negative],
            outputs=output_file
        )


if __name__ == "__main__":
    app.launch()