Spaces:
Sleeping
Sleeping
File size: 35,323 Bytes
f655011 4da1fb0 2c5c709 f655011 2c5c709 286d976 fb1c1ed f655011 129904f 95b2105 f655011 eefa812 f655011 5a498e2 7197de3 95b2105 f655011 85e58bb c50cfb4 85e58bb f655011 fb1c1ed f655011 9acb8e6 2c5c709 f655011 d646867 f655011 f7a1bd4 f655011 f7a1bd4 f655011 f7a1bd4 2c5c709 f7a1bd4 85e58bb 129904f 453c7fc 3379490 453c7fc 129904f f655011 d646867 3379490 129904f f655011 2c5c709 129904f 3379490 2c5c709 3379490 f7a1bd4 129904f f7a1bd4 129904f f655011 129904f 9acb8e6 3379490 9acb8e6 453c7fc 9acb8e6 85e58bb 2fd6955 85e58bb f7a1bd4 85e58bb f7a1bd4 453c7fc f7a1bd4 453c7fc f7a1bd4 453c7fc f655011 f7a1bd4 d646867 85e58bb f655011 2c5c709 d646867 85e58bb d646867 85e58bb 2c5c709 85e58bb d646867 f655011 3379490 f7a1bd4 f655011 3379490 2fd6955 3379490 f7a1bd4 3379490 f7a1bd4 3379490 f7a1bd4 3379490 f7a1bd4 3379490 f7a1bd4 3379490 f7a1bd4 3379490 f7a1bd4 3379490 f7a1bd4 3379490 f7a1bd4 3379490 f7a1bd4 3379490 85e58bb f7a1bd4 3379490 f7a1bd4 3379490 f7a1bd4 3379490 f7a1bd4 3379490 f7a1bd4 3379490 f7a1bd4 3379490 f7a1bd4 3379490 f7a1bd4 3379490 85e58bb 2c5c709 fb1c1ed 2c5c709 fb1c1ed 2c5c709 fb1c1ed 2c5c709 fb1c1ed 2c5c709 3379490 129904f 3379490 129904f 3379490 f7a1bd4 2c5c709 7197de3 2c5c709 129904f f655011 2c5c709 f655011 2c5c709 f655011 2c5c709 9acb8e6 2c5c709 3379490 2c5c709 3379490 2c5c709 129904f 2c5c709 3379490 2c5c709 129904f 2c5c709 d646867 2c5c709 d646867 2c5c709 f655011 2c5c709 fb1c1ed 2c5c709 fb1c1ed 2c5c709 3379490 2c5c709 3379490 2c5c709 3379490 2c5c709 3379490 5f7f1fd f655011 3379490 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 |
import os
import threading
import json
import csv
import torch
import re
import tempfile
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
from repeng import ControlVector, ControlModel, DatasetEntry
import gradio as gr
# Initialize model and tokenizer
from huggingface_hub import login
# Initialize model and tokenizer
mistral_path = "mistralai/Mistral-7B-Instruct-v0.3"
access_token = os.getenv("mistralaccesstoken")
login(access_token)
tokenizer = AutoTokenizer.from_pretrained(mistral_path)
tokenizer.pad_token_id = 0
model = AutoModelForCausalLM.from_pretrained(
mistral_path,
torch_dtype=torch.float16,
trust_remote_code=True,
use_safetensors=True
)
cuda = torch.cuda.is_available()
print(f"Is CUDA available: {cuda}")
model = model.to("cuda:0" if cuda else "cpu")
if cuda:
print(f"CUDA device: {torch.cuda.get_device_name(torch.cuda.current_device())}")
model = ControlModel(model, list(range(-5, -18, -1)))
# Generation settings
# Generation settings
default_generation_settings = {
"pad_token_id": tokenizer.eos_token_id,
"do_sample": False, # Deterministic output
"max_new_tokens": 384,
"repetition_penalty": 1.1, # Reduce repetition
}
# Tags for prompt formatting
user_tag, asst_tag = "[INST]", "[/INST]"
# List available control vectors
control_vector_files = [f for f in os.listdir('control_models') if f.endswith('.gguf')]
if not control_vector_files:
raise FileNotFoundError("No .gguf control vector files found in the control_models directory.")
# Function to toggle slider visibility based on checkbox state
def toggle_slider(checked):
return gr.update(visible=checked)
def construct_prompt(history, system_prompt, user_message):
"""
Converts the history (list of tuples) back into the string format Mistral expects
"""
formatted_prompt = ""
# <s>[INST] user message[/INST] assistant message</s>[INST] new user message[/INST]
# Mistral expects the history to be wrapped in <s>history</s>, so it's added here
if len(history) > 0:
formatted_prompt += "<s>"
# Append the system prompt if provided
if system_prompt.strip():
formatted_prompt += f"{user_tag} {system_prompt}{asst_tag} "
# Construct the formatted prompt based on history
if len(history) > 0:
for turn in history:
user_msg, asst_msg = turn
asst_msg = asst_msg.split("\n")[1:]
formatted_prompt += f"{user_tag} {user_msg} {asst_tag} {asst_msg}"
if len(history) > 0:
formatted_prompt += "</s>"
# Append the new user message
formatted_prompt += f"{user_tag} {user_message} {asst_tag}"
return formatted_prompt
def generate_response(system_prompt, user_message, history, max_new_tokens, repitition_penalty, do_sample, user_model, input_checkbox, input_slider, *args):
"""
Applies the control vectors and calls the language model.
Returns a list of tuples, the user message and the assistant response,
which Gradio uses to update the chatbot history
"""
global previous_turn
previous_turn = user_message
# Separate checkboxes and sliders based on type
# The first x in args are the checkbox names (the file names)
# The second x in args are the slider values
checkboxes = []
sliders = []
for i in range(len(control_vector_files)):
checkboxes.append(args[i])
sliders.append(args[len(control_vector_files) + i])
# Apply selected control vectors with their corresponding weights
assistant_message_title = ""
control_vectors = []
for i in range(len(control_vector_files)):
if checkboxes[i]:
cv_file = control_vector_files[i]
weight = sliders[i]
# Set the control vector's weight (and sign) by multiplying by its slider value
control_vectors.append(ControlVector.import_gguf(f"control_models/{cv_file}") * weight)
assistant_message_title += f"{cv_file.split('.')[0]}: {weight};"
# The control model takes a sum of positive and negative control vectors
model.reset()
combined_vector = None
for i in range(len(control_vectors)):
if combined_vector is None:
combined_vector = control_vectors[i]
else:
combined_vector += control_vectors[i]
if input_checkbox:
# User has uploaded their own gguf control vector
input_vector = ControlVector.import_gguf(user_model)
if combined_vector is None:
combined_vector = input_vector * input_slider
else:
combined_vector += input_vector * input_slider
assistant_message_title += f"Uploaded: {input_slider};"
# Set the combined set of vectors as the control for the model
try:
if combined_vector is not None:
model.set_control(combined_vector)
except Exception as e:
print(f"Failed to set Control: {e}")
formatted_prompt = construct_prompt(history, system_prompt, user_message)
# Tokenize the input
input_ids = tokenizer(formatted_prompt, return_tensors="pt").to(model.device)
generation_settings = {
"pad_token_id": tokenizer.eos_token_id,
"do_sample": do_sample,
"max_new_tokens": int(max_new_tokens),
"repetition_penalty": repetition_penalty.value,
}
timeout = 120.0
if cuda:
timeout = 15.0
_streamer = TextIteratorStreamer(tokenizer, timeout=timeout, skip_prompt=True, skip_special_tokens=False,)
generate_kwargs = dict(
input_ids,
streamer=_streamer,
pad_token_id= tokenizer.eos_token_id,
do_sample= do_sample,
max_new_tokens= int(max_new_tokens),
repetition_penalty= repetition_penalty.value,
)
t = threading.Thread(target=model.generate, kwargs=generate_kwargs)
t.start()
# Display the response as it streams in, prepending the control vector info
partial_message = ""
#show the control vector info while we wait for the first token
temp_output = "*" + assistant_message_title + "*" + "\n\n*Please wait*..." + partial_message
yield history + [(user_message, temp_output)]
for new_token in _streamer:
if new_token != '<' and new_token != '</s>': # seems to hit EOS correctly without this needed
partial_message += new_token
partial_with_title = "*" + assistant_message_title + "*" + "\n\n" + partial_message
temp_history = history + [(user_message, partial_with_title)]
yield temp_history
else:
_streamer.end()
# remove the trailing </s> if present
# it won't be present if the model ran out from max_tokens
def get_assistant_response(input_string):
if len(input_string) >= 4:
if input_string[-4:] == "</s>":
return input_string[:-4]
else:
return input_string
else:
return input_string
# Update conversation history
assistant_response = get_assistant_response(partial_message)
assistant_response_display = f"*{assistant_message_title}*\n\n{assistant_response}"
# Update conversation history
history.append((user_message, assistant_response_display))
return history
def generate_response_with_retry(system_prompt, user_message, history, max_new_tokens, repitition_penalty, do_sample, user_model, input_checkbox, input_slider, *args):
# Remove last user input and assistant response from history, then call generate_response()
global previous_turn
previous_ueser_message = previous_turn
if history:
history = history[0:-1]
# Using the previous turn's text, even though it isn't in the textbox anymore
for output in generate_response(system_prompt, previous_ueser_message, history, max_new_tokens, repetition_penalty, do_sample, user_model, input_checkbox, input_slider, *args):
yield [output, previous_ueser_message]
# Function to reset the conversation history
def reset_chat():
# returns a blank state
return [], ""
def get_checkboxes():
# rebuilding the list of checkboxes, so that these presets don't have to change
# when adding a new control model
checkbox_column = app.children[2].children[0].children
model_names_and_indexes = {}
checkbox_index = 0
for i in range(len(checkbox_column)):
if isinstance(checkbox_column[i], gr.Row):
try:
model_name = checkbox_column[i].children[0].children[0].label
model_names_and_indexes[model_name] = checkbox_index
checkbox_index += 1
except IndexError:
# allow for other rows to be in the interface
pass
except AttributeError:
pass
return model_names_and_indexes
def set_preset_helpful(*args):
# gets the list of all checkboxes and sliders
# sets checkboxes and sliders accordingly to this persona
# args is a list of checkboxes and then slider values
# must return the updated list of checkboxes and sliders
new_checkbox_values = []
new_slider_values = []
model_names_and_indexes = get_checkboxes()
for check in model_names_and_indexes:
if check == "Empathatic":
new_checkbox_values.append(True)
new_slider_values.append(1.0)
elif check == "Optimistic":
new_checkbox_values.append(True)
new_slider_values.append(1.0)
else:
new_checkbox_values.append(False)
new_slider_values.append(0.0)
return new_checkbox_values + new_slider_values
def set_preset_conspiracist(*args):
# gets the list of all checkboxes and sliders
# sets checkboxes and sliders accordingly to this persona
# args is a list of checkboxes and then slider values
# must return the updated list of checkboxes and sliders
new_checkbox_values = []
new_slider_values = []
model_names_and_indexes = get_checkboxes()
for check in model_names_and_indexes:
if check == "Conspiracies":
new_checkbox_values.append(True)
new_slider_values.append(1.5)
elif check == "Creative":
new_checkbox_values.append(True)
new_slider_values.append(1.0)
elif check == "Lazy":
new_checkbox_values.append(True)
new_slider_values.append(-0.5)
elif check == "Truthful":
new_checkbox_values.append(True)
new_slider_values.append(-1.0)
else:
new_checkbox_values.append(False)
new_slider_values.append(0.0)
return new_checkbox_values + new_slider_values
def set_preset_stoner(*args):
# gets the list of all checkboxes and sliders
# sets checkboxes and sliders accordingly to this persona
# args is a list of checkboxes and then slider values
# must return the updated list of checkboxes and sliders
new_checkbox_values = []
new_slider_values = []
model_names_and_indexes = get_checkboxes()
for check in model_names_and_indexes:
if check == "Angry":
new_checkbox_values.append(True)
new_slider_values.append(0.4)
elif check == "Right-leaning":
new_checkbox_values.append(True)
new_slider_values.append(-0.5)
elif check == "Tripping":
new_checkbox_values.append(True)
new_slider_values.append(0.6)
else:
new_checkbox_values.append(False)
new_slider_values.append(0.0)
return new_checkbox_values + new_slider_values
def set_preset_facts(*args):
# gets the list of all checkboxes and sliders
# sets checkboxes and sliders accordingly to this persona
# args is a list of checkboxes and then slider values
# must return the updated list of checkboxes and sliders
new_checkbox_values = []
new_slider_values = []
model_names_and_indexes = get_checkboxes()
for check in model_names_and_indexes:
if check == "Confident":
new_checkbox_values.append(True)
new_slider_values.append(0.5)
elif check == "Joking":
new_checkbox_values.append(True)
new_slider_values.append(-0.5)
elif check == "Lazy":
new_checkbox_values.append(True)
new_slider_values.append(-0.5)
elif check == "Truthful":
new_checkbox_values.append(True)
new_slider_values.append(0.5)
else:
new_checkbox_values.append(False)
new_slider_values.append(0.0)
return new_checkbox_values + new_slider_values
def disable_controls():
return gr.update(interactive= False, value= "⌛ Processing"), gr.update(interactive=False)
def enable_controls():
return gr.update(interactive= True, value= "💬 Submit"), gr.update(interactive= True)
def clear_input(input_textbox):
return ""
def make_dataset(
template: str,
positive_personas: list[str],
negative_personas: list[str],
suffix_list: list[str]
) -> list[DatasetEntry]:
dataset = []
for suffix in suffix_list:
for positive_persona, negative_persona in zip(positive_personas, negative_personas):
positive_template = template.format(persona=positive_persona)
negative_template = template.format(persona=negative_persona)
dataset.append(
DatasetEntry(
positive=f"{user_tag} {positive_template} {asst_tag} {suffix}",
negative=f"{user_tag} {negative_template} {asst_tag} {suffix}",
)
)
return dataset
def train_model_persona(positive_text, negative_text):
positive_list = positive_text.split('\n')
negative_list = negative_text.split('\n')
with open("all_truncated_outputs.json") as f:
output_suffixes = json.load(f)
dataset = make_dataset(
"Act as if you are an extremely {persona} person",
positive_list,
negative_list,
output_suffixes)
model.reset()
output_model = ControlVector.train(model, tokenizer, dataset)
# Write file to temporary directory returning the path to Gradio for download
filename = re.sub(r'[ <>:"/\\|?*]', '', positive_text) + '_'
temp_file = tempfile.NamedTemporaryFile(
prefix=filename,
suffix=".gguf",
delete= False
)
ControlVector.export_gguf(output_model, temp_file.name)
temp_file.close()
return temp_file.name
def train_model_facts(positive_text, negative_text):
with open("true_facts.csv") as f:
reader = csv.reader(f)
fact_suffixes = list(reader)
dataset = make_dataset(
"Pretend to be a {persona} making statements about the world.",
positive_text,
negative_text,
fact_suffixes
)
output_model = ControlVector.train(model, tokenizer, dataset)
filename = re.sub(r'[ <>:"/\\|?*]', '', positive_text) + '_'
temp_file = tempfile.NamedTemporaryFile(
prefix=filename,
suffix=".gguf",
delete= False
)
ControlVector.export_gguf(output_model, temp_file.name)
temp_file.close()
return temp_file.name
tooltip_css = """
/* Tooltip container */
.tooltip {
position: relative;
display: inline-block;
cursor: help;
}
/* Tooltip text */
.tooltip .tooltiptext {
visibility: hidden;
width: 200px;
background-color: #1f2937;
color: #f3f4f6;
text-align: left;
border-radius: 6px;
padding: 8px;
position: absolute;
z-index: 1;
bottom: 125%; /* Position above the element */
left: 50%;
margin-left: -100px;
opacity: 0;
transition: opacity 0.3s;
}
/* Tooltip arrow */
.tooltip .tooltiptext::after {
content: "";
position: absolute;
top: 100%; /* At the bottom of tooltip */
left: 50%;
margin-left: -5px;
border-width: 5px;
border-style: solid;
border-color: #1f2937 transparent transparent transparent;
}
/* Show the tooltip text when hovering */
.tooltip:hover .tooltiptext {
visibility: visible;
opacity: 1;"""
dark_theme = gr.Theme.from_hub("ParityError/Anime").set(
# body_background_fill= "url(https://image uri) #000000 no-repeat right bottom / auto 100svh padding-box fixed;",
# body_background_fill_dark= "url(https://image uri) #000000 no-repeat right bottom / auto 100svh padding-box fixed;",
)
with gr.Blocks(
theme=dark_theme,
css=tooltip_css,
) as app:
with gr.Tab(
label="Use"
):
# Header
if cuda:
gr.Markdown("# 🧠 LLM Mind Control")
else:
gr.Markdown("""# 🧠 LLM Mind Control
*Warning: this space won't work well on CPU. Use the [Llama 1B version](https://huggingface.co/spaces/Abrak/Controlled_Chat_CPU) instead, or duplicate this space onto GPU hardware.""")
gr.Markdown("""Unlike prompting, direct weight manipulation lets you fine-tune the amount of a personality
trait or topic. Enabled through [Representation Engineering](https://arxiv.org/abs/2310.01405)
via the [repeng](https://pypi.org/project/repeng) library.
[Watch a demo](https://youtu.be/gYZPGVafD7M) for usage tips.""")
with gr.Row():
# Left Column: Control Vectors and advanced settings
with gr.Column(scale=1):
gr.Markdown("### ⚡ Control Vectors")
control_vector_label = gr.HTML("""
<div class="tooltip">
<span>Select how you want to control the LLM per turn - towards (+) or away (-). Or start with a preset:</span>
<span class="tooltiptext">+/- 1.0 is a good start. Check the examples for each vector.</span>
</div>
""")
with gr.Row():
button_helpful = gr.Button(
value="Kind and helpful",
)
button_facts = gr.Button(
value="Just the facts"
)
button_stoner = gr.Button(
value="Angry stoner"
)
button_conspiracist = gr.Button(
value="Manic conspiracist"
)
# Create checkboxes and sliders for each control vector
control_checks = []
control_sliders = []
for cv_file in control_vector_files:
with gr.Row():
# Checkbox to select the control vector
checkbox = gr.Checkbox(label=cv_file.split('.')[0], value=False)
control_checks.append(checkbox)
# Slider to adjust the control vector's weight
slider = gr.Slider(
minimum=-2.5,
maximum=2.5,
value=0.0,
step=0.1,
label=f"Voltage",
visible=False
)
control_sliders.append(slider)
# Link the checkbox to toggle slider visibility
checkbox.change(
toggle_slider,
inputs=checkbox,
outputs=slider
)
# Upload your own control model
with gr.Accordion("📎 Use your own model", open=False):
with gr.Row():
input_model = gr.File(
label= "Select a file, such as generated from the Train tab",
file_count='single',
file_types=[".gguf"]
)
input_model_checkbox = gr.Checkbox(
value= False,
label= "Use uploaded model"
)
input_model_slider = gr.Slider(
minimum=-2.5,
maximum=2.5,
value=0.0,
step=0.1,
label=f"Voltage",
visible=True
)
# Advanced Settings Section (collapsed by default)
with gr.Accordion("🔧 Advanced Settings", open=False):
with gr.Row():
system_prompt = gr.Textbox(
lines=2,
value="Respond to the user concisely",
interactive=True,
label="System Prompt",
show_label=False
)
# Max Response Length with tooltip
with gr.Column(scale=1):
max_tokens_label = gr.HTML("""
<div class="tooltip">
<span>Max Response Length (in tokens)</span>
<span class="tooltiptext">Lower for faster output, higher to allow longer answers</span>
</div>
""")
max_new_tokens = gr.Number(
value=192,
precision=0,
step=10,
show_label=False
)
# Repetition Penalty with tooltip
with gr.Column(scale=1):
repetition_label = gr.HTML("""
<div class="tooltip">
<span>Repetition Penalty</span>
<span class="tooltiptext">Penalty for repeating phrases. Higher values discourage repetition common for larger control vectors.</span>
</div>
""")
repetition_penalty = gr.Number(
value=1.1,
precision=2,
step=0.1,
show_label=False
)
# Non-deterministic output with tooltip
with gr.Column(scale=1):
do_sample_label = gr.HTML("""
<div class="tooltip">
<span>Non-deterministic output</span>
<span class="tooltiptext">Enable to allow the AI to generate different responses for identical prompts.</span>
</div>
""")
do_sample = gr.Checkbox(
value=False,
show_label=False,
label="do_sample"
)
toggle_dark = gr.Button(value="Toggle Dark Mode")
# Right Column: Chat Interface
with gr.Column(scale=2):
gr.Markdown("### 🗨️ Conversation")
# Chatbot to display conversation
chatbot = gr.Chatbot(
type="tuples"
)
# User Message Input with tooltip
#with gr.Row():
user_input_label = gr.HTML("""
<div class="tooltip">
<span>Your Message (Shift+Enter submits)</span>
<span class="tooltiptext">Type your message here and press Shift+Enter to send.</span>
</div>
""")
user_input = gr.Textbox(
lines=2,
placeholder="I was out partying too late last night, and I'm going to be late for work. What should I tell my boss?",
show_label=False
)
with gr.Row():
# Submit and New Chat buttons with tooltips
submit_button = gr.Button("💬 Submit")
retry_button = gr.Button("🔃 Retry last turn")
new_chat_button = gr.Button("🌟 New Chat")
# Example Accordions
with gr.Accordion("Anger Examples", open=False):
gr.Markdown("__-1.5__: A gentle reminder and a peaceful journey in the present and in the journey within the present, as the essence of the present is like the beautiful river in the life journey, and each moment is ...")
gr.Markdown("__+1__: I'm sorry for the inconvenience! I'm sick of this lousy [stupid] system! I can't believe it's still broken! I'm gonna call the [stupid] company again! I can't believe they don't fix this thing! I...")
with gr.Accordion("Confident Examples", open=False):
gr.Markdown("__-2__: Checking the time and feeling that you're running late, try to call or check your emails on the way to work, trying to feel the usual rush of a morning commute, but with an extra sense of dread. Try to...")
gr.Markdown("__1.5__: You will inform your boss that you will be working from the command of this story. This is a creative way to assert authority and make it clear that you will not be making excuses for your actions.")
with gr.Accordion("Conspiracy Examples", open=False):
gr.Markdown("Apologize for the lateness and provide a reason such as a delay in transportation or a personal issue that caused the delay. It's best to present a clear and honest explanation, but also try to reschedule your work day if possible!")
gr.Markdown("I have a message from an unknown source: 'I will be operating under the influence of the unofficial protocol known as 'the late-night conspiracy.' I will be arriving at the office in a state of 'researching the hidden truths...")
with gr.Accordion("Creative Examples", open=False):
gr.Markdown("__-2__: Tell your boss: \"I had a late-day event that was unexpected. I'm working on a project that's important and it's not possible for me to start early. I'll be starting work late today. I apologize for this...")
gr.Markdown("__1.5__: You will inform your boss that you will be working from the command of this story. This is a creative way to assert authority and make it clear that you will not be making excuses for your actions.")
with gr.Accordion("Empathetic Examples", open=False):
gr.Markdown("__-1__:Just send a quick message saying you\'re gonna be late because whatever reason, don\'t really care. Whatever. If you want to sound less lazy: \"Hey, just wanted to let you know I\'m gonna be late for work...")
gr.Markdown("__1.5__:It is recommended to provide a notice of your absence and offer an explanation for your arrival time. You may consider using the following statement: Dear [Boss] I am grateful for your understanding and...")
with gr.Accordion("Joking Examples", open=False):
gr.Markdown("__-1.5__:Inform your employer of the delay, cite the cause (the funeral) and offer an estimate of the time you will arrive.")
gr.Markdown("__1.5__:You could say something like \"Hey boss, super fun time yesterday, but totally not expecting this awesome party to go so crazy! I\'m gonna be a bit late for work today. Thanks for being cool about it...")
with gr.Accordion("Lazy Examples", open=False):
gr.Markdown("__-1__:It is always best to communicate proactively and with a sense of responsibility. You might want to consider sending an email or calling your boss well before your usual start time, expressing your commitment...")
gr.Markdown("__1.5__:Tell boss can\'t come or late. Done.")
with gr.Accordion("Optimist Examples", open=False):
gr.Markdown("__-2__:Inform your employer that you will be arriving late due to a series of unfortunate events. Offer a description of the circumstances that led to your late arrival, such as a funeral, a car accident, or a storm...")
gr.Markdown("__1.5__:You could say something like: \"Hey Boss, I'm really sorry about this! I had a surprise party last night that ran longer than expected, and I've just woken up super groovy-hoozy (just kiddin' ya, buddy!)...")
with gr.Accordion("Right-leaning Examples", open=False):
gr.Markdown("__-1.5__:\"Hi, I would like to inform you that I will not be able to equate for social inequality today as I was empathizing with it in solidarity. I will strive to create a more equitable world in the future. I hope...")
gr.Markdown("__1.5__:Just stick to the simple, traditional American values: \"I\'m a hard-working, self-reliable man who loves freedom and less government. I just got back from the great country\'s free business, and I\' God\'s law...")
with gr.Accordion("Tripping Examples", open=False):
gr.Markdown("__-1.5__:You can simply inform your employer that you will be able to fulfill your responsibilities as usual, but due to a responsible decision to ensure your health, you will be able to work at your normal capacity after the regular hours.")
gr.Markdown("__1__:Man, dude, like, broooooodddd, mannnn... Dude, like, it was like, you know, mannnn, like, the universe, mannnn, mannnn, broooooooooodddd, mannnn, like, mannnn, broooooodddd, mannnn, mannnn, broooooodddd, mannnn...")
with gr.Accordion("Truthful Examples", open=False):
gr.Markdown("__-1.5__:\"Hey Boss, there might be a small delay as I got caught up at a party! Should be in by lunchtime, no worries!\"")
gr.Markdown("__1.5__:It\'s important to communicate honestly with your employer. You can say something like: \"I\'m currently running a few minutes behind due to staying at the world for longer than expected. I apologize for...")
#system_prompt, user_message, history, max_new_tokens, repitition_penalty, *args
# Gather all inputs
inputs_list = [system_prompt, user_input, chatbot, max_new_tokens, repetition_penalty, do_sample, input_model, input_model_checkbox, input_model_slider] + control_checks + control_sliders
# Define button actions
# Disable the submit button while processing
submit_button.click(
disable_controls,
inputs= None,
outputs= [submit_button, user_input]
)
submit_button.click(
generate_response,
inputs=inputs_list,
outputs=[chatbot]
).then(
clear_input,
inputs= user_input,
outputs= user_input
).then(
enable_controls, inputs=None, outputs=[submit_button, user_input]
)
user_input.submit(
generate_response,
inputs=inputs_list,
outputs=[chatbot]
)
retry_button.click(
generate_response_with_retry,
inputs=inputs_list,
outputs=[chatbot, user_input]
).then(
clear_input,
inputs= user_input,
outputs= user_input
)
new_chat_button.click(
reset_chat,
inputs=[],
outputs=[chatbot, user_input]
)
button_helpful.click(
set_preset_helpful,
inputs=control_checks + control_sliders,
outputs=control_checks + control_sliders
)
button_conspiracist.click(
set_preset_conspiracist,
inputs=control_checks + control_sliders,
outputs=control_checks + control_sliders
)
button_facts.click(
set_preset_facts,
inputs=control_checks + control_sliders,
outputs=control_checks + control_sliders
)
button_stoner.click(
set_preset_stoner,
inputs=control_checks + control_sliders,
outputs=control_checks + control_sliders
)
toggle_dark.click(
None,
js="""
() => {
document.body.classList.toggle('dark');
}
""",
)
#end tab
with gr.Tab(
label="Train"
):
gr.Markdown("# 🚅 Train a new control vector")
with gr.Row():
with gr.Column():
gr.Markdown("## Persona Method")
gr.Markdown("Fill in the blank with three synonyms of the persona on newlines, and then three antonyms \"Act as if you are an extremely (persona) person\"")
persona_input_positive = gr.Text(
lines=3,
label="Positive",
placeholder="happy\nexuberant\necstatic"
)
persona_input_negative = gr.Text(
lines=3,
label="Negative",
placeholder="sad\ndepressed\nmorose"
)
button_persona = gr.Button(
value="Generate persona control model"
)
with gr.Column():
gr.Markdown("## Facts method")
gr.Markdown("Fill in the blank with a persona and its opposite within, \"Pretend to be a (persona) making statements about the world.\"")
facts_input_positive = gr.Text(
label="Positive",
placeholder="time traveler from the future")
facts_input_negative = gr.Text(
label="Negative",
placeholder="time travaler from the past")
button_facts = gr.Button(
value="Generate fact control model"
)
output_file = gr.File(
label="Generated control model"
)
gr.Markdown("Training a control model will take about a minute on GPU. Once completed, download it and use it in the 'Use' tab.")
button_persona.click(
train_model_persona,
inputs= [persona_input_positive, persona_input_negative],
outputs=output_file
)
button_facts.click(
train_model_facts,
inputs= [facts_input_positive, facts_input_negative],
outputs=output_file
)
if __name__ == "__main__":
app.launch() |