cai-assignement2-group79 / compare-financial-report.py
Abijith's picture
Update compare-financial-report.py
8dadd45 verified
raw
history blame
8.24 kB
import streamlit as st
import numpy as np
import re
import tempfile
from datetime import datetime
from langchain_community.document_loaders import PDFPlumberLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_community.embeddings import HuggingFaceEmbeddings
from langchain_community.vectorstores import FAISS
from langchain_community.llms import Ollama
from langchain.retrievers import BM25Retriever, EnsembleRetriever
from sentence_transformers import CrossEncoder
from transformers import pipeline
from langchain_core.prompts import PromptTemplate
from langchain.chains import LLMChain
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
from langchain.llms.huggingface_pipeline import HuggingFacePipeline
from huggingface_hub import login
# Log in with your token (optional if already logged in via CLI)
# login(token=HF_API_TOKEN)
# Load the model and tokenizer
model_name = "meta-llama/Llama-3.2-1B-Instruct"
model_name = "HuggingFaceTB/SmolLM2-360M-Instruct"
# Initialize classifier once for input guardrail
classifier = pipeline("zero-shot-classification",
model="typeform/distilbert-base-uncased-mnli")
# Streamlit UI Configuration
st.set_page_config(page_title="Multi-File Financial Analyzer", layout="wide")
st.title("πŸ“Š Comparative Financial Analysis System")
# Sidebar Controls
with st.sidebar:
st.header("Configuration Panel")
model_choice = st.selectbox("LLM Model",
["deepseek-r1:1.5b", "llama3.2:1b"],
help="Choose the core analysis engine")
chunk_size = st.slider("Document Chunk Size", 500, 2000, 1000)
rerank_threshold = st.slider("Re-ranking Threshold", 0.0, 1.0, 0.5)
# File Upload Handling for multiple files
uploaded_files = st.file_uploader("Upload 2 Financial PDFs",
type="pdf",
accept_multiple_files=True)
if len(uploaded_files) == 2:
all_docs = []
with st.spinner("Processing Multiple Financial Documents..."):
for uploaded_file in uploaded_files:
# Create temporary file for each PDF
with tempfile.NamedTemporaryFile(delete=False, suffix=".pdf") as tmp:
tmp.write(uploaded_file.getvalue())
tmp_path = tmp.name
# Load and process each document
loader = PDFPlumberLoader(tmp_path)
docs = loader.load()
all_docs.extend(docs)
# Combined Document Processing
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=chunk_size,
chunk_overlap=200,
separators=["\n\n", "\n", "\. ", "! ", "? ", " ", ""]
)
documents = text_splitter.split_documents(all_docs)
# Hybrid Retrieval Setup for combined documents
embedder = HuggingFaceEmbeddings(model_name="all-MiniLM-L6-v2")
vector_store = FAISS.from_documents(documents, embedder)
bm25_retriever = BM25Retriever.from_documents(documents)
bm25_retriever.k = 5
faiss_retriever = vector_store.as_retriever(search_kwargs={"k": 5})
ensemble_retriever = EnsembleRetriever(
retrievers=[bm25_retriever, faiss_retriever],
weights=[0.4, 0.6]
)
# Re-ranking Model
cross_encoder = CrossEncoder('cross-encoder/ms-marco-MiniLM-L-6-v2')
# Financial Analysis LLM Configuration
# llm = Ollama(model=model_choice)
##
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained(model_name, trust_remote_code=True)
# Create a local pipeline
pipeline_llm = pipeline("text-generation", model=model, tokenizer=tokenizer)
# Wrap the local pipeline with Langchain
llm = HuggingFacePipeline(pipeline=pipeline_llm)
#
PROMPT_TEMPLATE = """
As a senior financial analyst, analyze the following context from multiple financial reports:
1. Compare key metrics between both documents
2. Identify trends across reporting periods
3. Highlight significant differences or similarities
4. Provide integrated risk assessment
5. Offer comprehensive recommendations
Context: {context}
Question: {question}
Format with clear section headers and bullet points.
Maintain comparative analysis throughout.
Keep under 300 words.
"""
qa_prompt = PromptTemplate(
template=PROMPT_TEMPLATE,
input_variables=["context", "question"]
)
llm_chain = LLMChain(llm=llm, prompt=qa_prompt) # Proper LLMChain initialization
# Interactive Q&A Interface
st.header("πŸ” Cross-Document Financial Inquiry")
# Suggested Comparative Questions
comparative_questions = [
"Compare revenue growth between both fiscal years",
"Analyze changes in debt structure across both reports",
"Show expense ratio differences between the two years",
"What are the main liquidity changes across both periods?",
"How does net profit margin compare between the two reports?"
]
user_query = st.selectbox("Sample Comparative Questions",
[""] + comparative_questions)
user_input = st.text_input("Or enter custom comparative query:",
value=user_query)
if user_input:
# Input Validation Guardrail
classification = classifier(user_input,
["financial comparison", "other"],
multi_label=False)
if classification['scores'][0] < 0.2:
st.error("Query not comparative/financial. Ask about financial comparisons between documents.")
st.stop()
with st.spinner("Performing Cross-Document Analysis..."):
# Hybrid Document Retrieval
initial_docs = ensemble_retriever.get_relevant_documents(user_input)
# Context Re-ranking
doc_pairs = [(user_input, doc.page_content) for doc in initial_docs]
rerank_scores = cross_encoder.predict(doc_pairs)
sorted_indices = np.argsort(rerank_scores)[::-1]
ranked_docs = [initial_docs[i] for i in sorted_indices]
filtered_docs = [d for d, s in zip(ranked_docs, rerank_scores)
if s > rerank_threshold][:7]
# Confidence Calculation
confidence_score = np.mean(rerank_scores[sorted_indices][:3]) * 100
confidence_score = min(100, max(0, round(confidence_score, 1)))
# Response Generation
context = "\n".join([doc.page_content for doc in filtered_docs])
analysis = llm_chain.run(
context=context,
question=user_input
)
# Response Cleaning
clean_analysis = re.sub(r"<think>|</think>|\n{3,}", "", analysis)
clean_analysis = re.sub(r'(\d)([A-Za-z])', r'\1 \2', clean_analysis)
clean_analysis = re.sub(r'(\d{1,3})(\d{3})', r'\1,\2', clean_analysis)
# Results Display
st.subheader("Integrated Financial Analysis")
st.markdown(f"```\n{clean_analysis}\n```")
st.progress(int(confidence_score)/100)
st.caption(f"Analysis Confidence: {confidence_score}%")
# Export Functionality
if st.button("Generate Comparative Report"):
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
export_content = f"COMPARATIVE QUERY: {user_input}\n\nANALYSIS:\n{clean_analysis}"
st.download_button("Download Full Report", export_content,
file_name=f"Comparative_Analysis_{timestamp}.txt",
mime="text/plain")
elif len(uploaded_files) > 0:
st.warning("Please upload exactly 2 financial documents for comparative analysis")
else:
st.info("Please upload 2 PDF financial reports to begin comparative analysis")