Update TableQAGradio.py
Browse files- TableQAGradio.py +33 -126
TableQAGradio.py
CHANGED
@@ -1,143 +1,50 @@
|
|
1 |
-
#!/usr/bin/env python
|
2 |
-
# coding: utf-8
|
3 |
-
|
4 |
-
# ## Using Gradio to create a simple interface.
|
5 |
-
#
|
6 |
-
# Check out the library on [github](https://github.com/gradio-app/gradio-UI) and see the [getting started](https://gradio.app/getting_started.html) page for more demos.
|
7 |
-
|
8 |
-
# We'll start with a basic function that greets an input name.
|
9 |
-
|
10 |
-
# In[1]:
|
11 |
-
|
12 |
-
|
13 |
-
# get_ipython().system('pip install -q gradio')
|
14 |
-
|
15 |
-
|
16 |
-
# Now we'll wrap this function with a Gradio interface.
|
17 |
-
|
18 |
-
# In[2]:
|
19 |
-
|
20 |
|
21 |
from transformers import pipeline
|
22 |
import pandas as pd
|
|
|
23 |
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
#
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
#
|
46 |
-
|
47 |
-
|
48 |
-
# table2 = pd.read_excel("/content/Sample.xlsx").astype(str)
|
49 |
-
# table3 = table2.head(20)
|
50 |
-
|
51 |
-
|
52 |
-
# In[7]:
|
53 |
-
|
54 |
-
|
55 |
-
# table3
|
56 |
-
|
57 |
-
|
58 |
-
# In[ ]:
|
59 |
-
|
60 |
-
|
61 |
-
#t4 = table3.reset_index()
|
62 |
-
# table4
|
63 |
-
|
64 |
-
|
65 |
-
# In[9]:
|
66 |
-
|
67 |
-
|
68 |
-
query = "what is the highest delta onu rx power?"
|
69 |
-
query2 = "what is the lowest delta onu rx power?"
|
70 |
-
query3 = "what is the most frequent login id?"
|
71 |
-
query4 = "how many rows with nan values are there?"
|
72 |
-
query5 = "how many S2 values are there"
|
73 |
-
|
74 |
-
|
75 |
-
# In[11]:
|
76 |
-
|
77 |
-
|
78 |
-
# result = tsqa(table=table3, query=query5)["answer"]
|
79 |
-
# result
|
80 |
-
|
81 |
-
|
82 |
-
# In[13]:
|
83 |
-
|
84 |
-
|
85 |
-
#mstqa(table=table4, query=query1)["answer"]
|
86 |
-
|
87 |
-
|
88 |
-
# In[14]:
|
89 |
-
|
90 |
-
|
91 |
-
# mswtqa(table=table3, query=query5)["answer"]
|
92 |
-
|
93 |
-
|
94 |
-
# In[15]:
|
95 |
-
|
96 |
-
|
97 |
-
def main(filepath, query):
|
98 |
-
|
99 |
-
table5 = pd.read_excel(filepath).head(20).astype(str)
|
100 |
-
result = tsqa(table=table5, query=query)["answer"]
|
101 |
-
return result
|
102 |
-
|
103 |
-
#greet("World")
|
104 |
-
|
105 |
-
|
106 |
-
# In[16]:
|
107 |
-
|
108 |
|
109 |
-
import gradio as gr
|
110 |
|
111 |
iface = gr.Interface(
|
112 |
fn=main,
|
113 |
inputs=[
|
|
|
114 |
gr.File(type="filepath", label="Upload XLSX file"),
|
115 |
gr.Textbox(type="text", label="Enter text"),
|
116 |
],
|
117 |
outputs=[gr.Textbox(type="text", label="Text Input Output")],
|
118 |
-
title="
|
119 |
description="Upload an XLSX file and/or enter text, and the processed output will be displayed.",
|
|
|
|
|
|
|
|
|
|
|
120 |
)
|
121 |
|
122 |
# Launch the Gradio interface
|
123 |
-
iface.launch()
|
124 |
-
|
125 |
-
|
126 |
-
# In[34]:
|
127 |
-
|
128 |
-
|
129 |
-
import os
|
130 |
-
import subprocess
|
131 |
-
|
132 |
-
# Use subprocess to execute the shell command
|
133 |
-
# subprocess.run(["jupyter", "nbconvert", "--to", "script", "--format", "script", "--output", "/content/", "/content/drive/MyDrive/Colab Notebooks/NEW TableQA-GRADIO: Hello World.ipynb"])
|
134 |
-
|
135 |
-
|
136 |
-
# In[19]:
|
137 |
-
|
138 |
-
|
139 |
-
# get_ipython().system('gradio deploy')
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
# That's all! Go ahead and open that share link in a new tab. Check out our [getting started](https://gradio.app/getting_started.html) page for more complicated demos.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
|
2 |
from transformers import pipeline
|
3 |
import pandas as pd
|
4 |
+
import gradio as gr
|
5 |
|
6 |
+
# Define the models
|
7 |
+
models = {
|
8 |
+
"GTQA (google/tapas-large-finetuned-wtq)": pipeline(task="table-question-answering", model="google/tapas-large-finetuned-wtq"),
|
9 |
+
"GTSQA (google/tapas-large-finetuned-sqa)": pipeline(task="table-question-answering", model="google/tapas-large-finetuned-sqa"),
|
10 |
+
"MSWTQA (microsoft/tapex-large-finetuned-wtq)": pipeline(task="table-question-answering", model="microsoft/tapex-large-finetuned-wtq"),
|
11 |
+
"MSTQA (microsoft/tapex-large-finetuned-wikisql)": pipeline(task="table-question-answering", model="microsoft/tapex-large-finetuned-wikisql")
|
12 |
+
}
|
13 |
+
|
14 |
+
def main(model_choice, file_path, text):
|
15 |
+
# Read the Excel file
|
16 |
+
table_df = pd.read_excel(file_path).astype(str)
|
17 |
+
|
18 |
+
# Prepare the input for the model
|
19 |
+
tqa_pipeline_input = {
|
20 |
+
"table": table_df,
|
21 |
+
"query": text
|
22 |
+
}
|
23 |
+
|
24 |
+
# Get the selected model
|
25 |
+
model = models[model_choice]
|
26 |
+
|
27 |
+
# Run the model
|
28 |
+
result = model(tqa_pipeline_input)["answer"]
|
29 |
+
return result
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
|
|
|
31 |
|
32 |
iface = gr.Interface(
|
33 |
fn=main,
|
34 |
inputs=[
|
35 |
+
gr.Dropdown(choices=list(models.keys()), label="Select Model"),
|
36 |
gr.File(type="filepath", label="Upload XLSX file"),
|
37 |
gr.Textbox(type="text", label="Enter text"),
|
38 |
],
|
39 |
outputs=[gr.Textbox(type="text", label="Text Input Output")],
|
40 |
+
title="Multi-input Processor",
|
41 |
description="Upload an XLSX file and/or enter text, and the processed output will be displayed.",
|
42 |
+
examples=[
|
43 |
+
["https://huggingface.co/spaces/Abbasid/TableQA/blob/main/Literature%20review_Test.xlsx", "How many papers are before the year 2020?"],
|
44 |
+
["https://huggingface.co/spaces/Abbasid/TableQA/blob/main/Literature%20review_Test.xlsx", "How many papers are after the year 2020?"],
|
45 |
+
["https://huggingface.co/spaces/Abbasid/TableQA/blob/main/Literature%20review_Test.xlsx", "what is the paper with NISIT in the title?"],
|
46 |
+
],
|
47 |
)
|
48 |
|
49 |
# Launch the Gradio interface
|
50 |
+
iface.launch(debug=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|