Update app.py
Browse files
app.py
CHANGED
@@ -0,0 +1,52 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from huggingface_hub import hf_hub_download
|
3 |
+
from terratorch.cli_tools import LightningInferenceModel
|
4 |
+
|
5 |
+
# Download the model checkpoint and configuration file
|
6 |
+
ckpt_path = hf_hub_download(repo_id="ibm-granite/granite-geospatial-biomass", filename="biomass_model.ckpt")
|
7 |
+
config_path = hf_hub_download(repo_id="ibm-granite/granite-geospatial-biomass", filename="config.yaml")
|
8 |
+
|
9 |
+
# Load the model
|
10 |
+
model = LightningInferenceModel.from_config(config_path, ckpt_path)
|
11 |
+
|
12 |
+
# Create a Streamlit app
|
13 |
+
st.title("Agricultural Yield Prediction App")
|
14 |
+
|
15 |
+
# Input field for directory containing input files
|
16 |
+
input_directory = st.text_input("Enter input directory:")
|
17 |
+
|
18 |
+
# Enter Farm Data sidebar
|
19 |
+
st.sidebar.subheader("Enter Farm Data:")
|
20 |
+
farm_data = {
|
21 |
+
"Soil Type": st.sidebar.selectbox("Soil Type", ["Clay", "Silt", "Sand"]),
|
22 |
+
"Weather Conditions": st.sidebar.selectbox("Weather Conditions", ["Sunny", "Rainy", "Cloudy"]),
|
23 |
+
"Crop Type": st.sidebar.selectbox("Crop Type", ["Wheat", "Corn", "Soybean"]),
|
24 |
+
"Crop Variety": st.sidebar.text_input("Crop Variety"),
|
25 |
+
"Soil pH": st.sidebar.number_input("Soil pH", min_value=0.0, max_value=14.0),
|
26 |
+
"Fertilizer Application": st.sidebar.text_input("Fertilizer Application"),
|
27 |
+
"Irrigation": st.sidebar.selectbox("Irrigation", ["Yes", "No"]),
|
28 |
+
"Pest/Disease Management": st.sidebar.text_input("Pest/Disease Management"),
|
29 |
+
"Weather Data": {
|
30 |
+
"Temperature": st.sidebar.number_input("Temperature (°C)", min_value=-20.0, max_value=40.0),
|
31 |
+
"Precipitation": st.sidebar.number_input("Precipitation (mm)", min_value=0.0, max_value=1000.0),
|
32 |
+
"Sunshine Hours": st.sidebar.number_input("Sunshine Hours", min_value=0.0, max_value=24.0)
|
33 |
+
},
|
34 |
+
"Topography": {
|
35 |
+
"Slope": st.sidebar.number_input("Slope (%)", min_value=0.0, max_value=100.0),
|
36 |
+
"Aspect": st.sidebar.selectbox("Aspect", ["North", "South", "East", "West"])
|
37 |
+
},
|
38 |
+
"Previous Crop": st.sidebar.selectbox("Previous Crop", ["Wheat", "Corn", "Soybean", "None"])
|
39 |
+
}
|
40 |
+
|
41 |
+
# Button to trigger prediction
|
42 |
+
if st.button("Predict Yield"):
|
43 |
+
if input_directory:
|
44 |
+
# Run inference on the input directory
|
45 |
+
inference_results, input_file_names = model.inference_on_dir(input_directory)
|
46 |
+
|
47 |
+
# Display predicted yields
|
48 |
+
st.subheader("Predicted Yields:")
|
49 |
+
for file_name, result in zip(input_file_names, inference_results):
|
50 |
+
st.write(f"{file_name}: {result}")
|
51 |
+
else:
|
52 |
+
st.error("Please enter a valid input directory.")
|