|
from PIL import Image, ImageDraw, ImageFont |
|
import tempfile |
|
import gradio as gr |
|
from smolagents import CodeAgent, InferenceClientModel |
|
from smolagents import DuckDuckGoSearchTool, Tool |
|
from diffusers import DiffusionPipeline |
|
import torch |
|
from smolagents import OpenAIServerModel |
|
import os |
|
from huggingface_hub import login |
|
|
|
|
|
openai_key = os.environ.get("OPENAI_API_KEY") |
|
hf_token = os.environ.get("HF_TOKEN") |
|
|
|
if hf_token: |
|
login(token=hf_token) |
|
else: |
|
print("Warning: HF_TOKEN not set.") |
|
|
|
if openai_key: |
|
|
|
print("OpenAI API key is set") |
|
else: |
|
print("Warning: OPENAI_API_KEY not set.") |
|
|
|
print("HF_TOKEN set?", "Yes" if hf_token else "No") |
|
print("OPENAI_API_KEY set?", "Yes" if openai_key else "No") |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def add_label_to_image(image, label): |
|
draw = ImageDraw.Draw(image) |
|
font_path = "/usr/share/fonts/truetype/dejavu/DejaVuSans-Bold.ttf" |
|
font_size = 30 |
|
try: |
|
font = ImageFont.truetype(font_path, font_size) |
|
except: |
|
font = ImageFont.load_default() |
|
|
|
text_bbox = draw.textbbox((0, 0), label, font=font) |
|
text_width, text_height = text_bbox[2] - text_bbox[0], text_bbox[3] - text_bbox[1] |
|
position = (image.width - text_width - 20, image.height - text_height - 20) |
|
|
|
rect_margin = 10 |
|
rect_position = [ |
|
position[0] - rect_margin, |
|
position[1] - rect_margin, |
|
position[0] + text_width + rect_margin, |
|
position[1] + text_height + rect_margin, |
|
] |
|
draw.rectangle(rect_position, fill=(0, 0, 0, 128)) |
|
draw.text(position, label, fill="white", font=font) |
|
return image |
|
|
|
|
|
def plot_and_save_agent_image(agent_image, label, save_path=None): |
|
|
|
pil_image = agent_image |
|
labeled_image = add_label_to_image(pil_image, label) |
|
|
|
if save_path: |
|
labeled_image.save(save_path) |
|
print(f"Image saved to {save_path}") |
|
else: |
|
print("No save path provided. Image not saved.") |
|
|
|
|
|
def generate_prompts_for_object(object_name): |
|
return { |
|
"past": f"Show an old version of a {object_name} from its early days.", |
|
"present": f"Show a {object_name} with current features/design/technology.", |
|
"future": f"Show a futuristic version of a {object_name}, by predicting advanced features and futuristic design." |
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
image_generation_tool = Tool.from_space( |
|
|
|
"black-forest-labs/FLUX.1-schnell", |
|
|
|
api_name="/infer", |
|
name="image_generator", |
|
description="Generate an image from a prompt" |
|
) |
|
|
|
search_tool = DuckDuckGoSearchTool() |
|
|
|
|
|
llm_engine2 = InferenceClientModel("Qwen/Qwen2.5-Coder-32B-Instruct", provider="together") |
|
|
|
|
|
llm_engine = OpenAIServerModel( |
|
model_id="gpt-4o-mini", |
|
api_base="https://api.openai.com/v1", |
|
api_key=openai_key |
|
) |
|
|
|
|
|
agent = CodeAgent(tools=[image_generation_tool, search_tool], model=llm_engine) |
|
|
|
|
|
|
|
|
|
|
|
from PIL import Image |
|
|
|
|
|
def generate_object_history(object_name): |
|
images = [] |
|
prompts = generate_prompts_for_object(object_name) |
|
|
|
general_instruction = ( |
|
"Search the necessary information and features for the following prompt, " |
|
"then generate an image of it." |
|
) |
|
|
|
image_paths = [] |
|
for time_period, prompt in prompts.items(): |
|
print(f"Generating {time_period} frame: {prompt}") |
|
|
|
try: |
|
result = agent.run( |
|
general_instruction, |
|
additional_args={"prompt": prompt, |
|
"width": 256, |
|
"height": 256, |
|
"seed": 0, |
|
"randomize_seed": False, |
|
"num_inference_steps": 4 |
|
} |
|
) |
|
|
|
|
|
if isinstance(result, (list, tuple)): |
|
image_filepath = result[0] |
|
else: |
|
image_filepath = result |
|
|
|
|
|
image = Image.open(image_filepath) |
|
|
|
|
|
image_filename = f"{object_name}_{time_period}.png" |
|
image.save(image_filename) |
|
|
|
|
|
plot_and_save_agent_image(image, f"{object_name} - {time_period.title()}", save_path=image_filename) |
|
|
|
image_paths.append(image_filename) |
|
images.append(image) |
|
|
|
except Exception as e: |
|
print(f"Agent failed on {time_period}: {e}") |
|
continue |
|
|
|
|
|
gif_path = f"{object_name}_evolution.gif" |
|
if images: |
|
images[0].save(gif_path, save_all=True, append_images=images[1:], duration=1000, loop=0) |
|
|
|
return image_paths, gif_path |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def create_gradio_interface(): |
|
with gr.Blocks() as demo: |
|
gr.Markdown("# TimeMetamorphy: An Object Evolution Generator") |
|
gr.Markdown(""" |
|
Explore how everyday objects evolved over time. Enter an object name like "phone", "car", or "bicycle" |
|
and see its past, present, and future visualized with AI! |
|
""") |
|
|
|
gr.HTML("<p style='color: red; font-weight: bold;'>🚨 Note: If you experience issues connecting to the API (while using the HF Space), If that happens feel free to run the exact same app/code in this Colab Notebook (it solve the issue).<a href='https://colab.research.google.com/drive/1aKBJWkRBKhW8VFEu8p1zaxJr9VDzPaRz?usp=sharing' target='_blank' style='color: red; text-decoration: underline;'> Open Notebook</a>.</p>") |
|
|
|
|
|
default_images = [ |
|
"car_past.png", |
|
"car_present.png", |
|
"car_future.png" |
|
] |
|
default_gif_path = "car_evolution.gif" |
|
|
|
with gr.Row(): |
|
with gr.Column(): |
|
object_name_input = gr.Textbox(label="Enter an object name", placeholder="e.g. bicycle, car, phone") |
|
generate_button = gr.Button("Generate Evolution") |
|
image_gallery = gr.Gallery(label="Generated Images", columns=3, rows=1, value=default_images, type="filepath") |
|
gif_output = gr.Image(label="Generated GIF", value=default_gif_path, type="filepath") |
|
|
|
|
|
|
|
generate_button.click(fn=generate_object_history, inputs=[object_name_input], outputs=[image_gallery, gif_output]) |
|
|
|
return demo |
|
|
|
|
|
|
|
demo = create_gradio_interface() |
|
demo.launch() |
|
|