File size: 7,931 Bytes
3db8e9e
5658261
3db8e9e
9c6b402
63f528a
5ace3a2
 
a48c1bf
497259e
e3a4c52
497259e
c7357f1
e3a4c52
 
 
 
 
 
 
a48c1bf
e3a4c52
 
 
497259e
e3a4c52
 
 
 
 
497259e
 
5658261
 
 
3db8e9e
 
 
 
 
 
 
 
 
5658261
3db8e9e
5658261
3db8e9e
5658261
3db8e9e
 
5658261
 
 
 
3db8e9e
 
 
 
 
5658261
 
80d784e
2200a21
5658261
cbc8cbc
3db8e9e
 
 
5658261
 
 
3db8e9e
 
 
 
 
 
 
 
08ac9f6
2200a21
 
 
 
 
d7983da
08ac9f6
0ee766a
49617fe
6a258a0
4ff0bf6
 
 
81328c2
5658261
37383cf
7a56df2
2200a21
a48c1bf
 
 
 
 
e3a4c52
a48c1bf
 
 
5658261
 
 
 
 
 
8d472c2
 
e3a4c52
3db8e9e
5658261
3db8e9e
8349a8f
 
 
 
 
 
642ff3f
3db8e9e
 
8349a8f
6d50a88
 
 
e800bcd
e3a4c52
 
e800bcd
 
 
 
6d50a88
642ff3f
8d472c2
642ff3f
8d472c2
 
 
 
 
 
642ff3f
8d472c2
642ff3f
 
8d472c2
 
642ff3f
 
 
 
8d472c2
6d50a88
 
 
3db8e9e
8d472c2
3db8e9e
642ff3f
 
 
 
3db8e9e
8d472c2
5658261
 
 
3db8e9e
2200a21
3db8e9e
 
5658261
3db8e9e
5658261
 
3db8e9e
fd2103c
adcd167
c7357f1
3db8e9e
 
7245a2d
 
 
da48de7
7245a2d
3db8e9e
 
 
5658261
3db8e9e
2200a21
 
 
 
3db8e9e
 
5658261
3db8e9e
 
5658261
642ff3f
3db8e9e
642ff3f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
from PIL import Image, ImageDraw, ImageFont
import tempfile
import gradio as gr
from smolagents import CodeAgent, InferenceClientModel
from smolagents import DuckDuckGoSearchTool, Tool
from diffusers import DiffusionPipeline
import torch
from smolagents import OpenAIServerModel
import os
from huggingface_hub import login


openai_key = os.environ.get("OPENAI_API_KEY")
hf_token = os.environ.get("HF_TOKEN")

if hf_token:
    login(token=hf_token)
else:
    print("Warning: HF_TOKEN not set.")

if openai_key:
    # Exemplo de como usar a OpenAI API key
    print("OpenAI API key is set")
else:
    print("Warning: OPENAI_API_KEY not set.")

print("HF_TOKEN set?", "Yes" if hf_token else "No")
print("OPENAI_API_KEY set?", "Yes" if openai_key else "No")



# =========================================================
# Utility functions
# =========================================================

def add_label_to_image(image, label):
    draw = ImageDraw.Draw(image)
    font_path = "/usr/share/fonts/truetype/dejavu/DejaVuSans-Bold.ttf"
    font_size = 30
    try:
        font = ImageFont.truetype(font_path, font_size)
    except:
        font = ImageFont.load_default()

    text_bbox = draw.textbbox((0, 0), label, font=font)
    text_width, text_height = text_bbox[2] - text_bbox[0], text_bbox[3] - text_bbox[1]
    position = (image.width - text_width - 20, image.height - text_height - 20)

    rect_margin = 10
    rect_position = [
        position[0] - rect_margin,
        position[1] - rect_margin,
        position[0] + text_width + rect_margin,
        position[1] + text_height + rect_margin,
    ]
    draw.rectangle(rect_position, fill=(0, 0, 0, 128))
    draw.text(position, label, fill="white", font=font)
    return image


def plot_and_save_agent_image(agent_image, label, save_path=None):
    #pil_image = agent_image.to_raw()
    pil_image = agent_image
    labeled_image = add_label_to_image(pil_image, label)
    #labeled_image.show()
    if save_path:
        labeled_image.save(save_path)
        print(f"Image saved to {save_path}")
    else:
        print("No save path provided. Image not saved.")


def generate_prompts_for_object(object_name):
    return {
        "past": f"Show an old version of a {object_name} from its early days.",
        "present": f"Show a {object_name} with current features/design/technology.",
        "future": f"Show a futuristic version of a {object_name}, by predicting advanced features and futuristic design."
    }



# =========================================================
# Tool and Agent Initialization
# =========================================================

image_generation_tool = Tool.from_space(
    #"KingNish/Realtime-FLUX",
    "black-forest-labs/FLUX.1-schnell",
    #"AMfeta99/FLUX.1-schnell",
	api_name="/infer",
    name="image_generator",
    description="Generate an image from a prompt"
)

search_tool = DuckDuckGoSearchTool()
#llm_engine = InferenceClientModel("Qwen/Qwen2.5-72B-Instruct")

llm_engine2 = InferenceClientModel("Qwen/Qwen2.5-Coder-32B-Instruct", provider="together")

# Inicialização do modelo OpenAI com smolagents
llm_engine = OpenAIServerModel(
    model_id="gpt-4o-mini",   # Exemplo: ajuste para o modelo OpenAI que deseja usar
    api_base="https://api.openai.com/v1",
    api_key=openai_key
)


agent = CodeAgent(tools=[image_generation_tool, search_tool], model=llm_engine)

# =========================================================
# Main logic for image generation
# =========================================================

from PIL import Image


def generate_object_history(object_name):
    images = []
    prompts = generate_prompts_for_object(object_name)

    general_instruction = (
        "Search the necessary information and features for the following prompt, "
        "then generate an image of it."
    )

    image_paths = []
    for time_period, prompt in prompts.items():
        print(f"Generating {time_period} frame: {prompt}")

        try:
            result = agent.run(
                general_instruction,
                additional_args={"prompt": prompt,
                                "width": 256,             # specify width
                                "height": 256,            # specify height
                                "seed": 0,                # optional seed
                                "randomize_seed": False,  # optional
                                "num_inference_steps": 4  # optional
                                }
            )

            # result is tuple: (filepath, seed)
            if isinstance(result, (list, tuple)):
                image_filepath = result[0]
            else:
                image_filepath = result  # fallback in case result is just a string

            # Open the image from filepath
            image = Image.open(image_filepath)

            # Save the image to your naming convention
            image_filename = f"{object_name}_{time_period}.png"
            image.save(image_filename)

            # Optional: call your plotting function (if needed)
            plot_and_save_agent_image(image, f"{object_name} - {time_period.title()}", save_path=image_filename)

            image_paths.append(image_filename)
            images.append(image)

        except Exception as e:
            print(f"Agent failed on {time_period}: {e}")
            continue

    # Create GIF from generated images if any
    gif_path = f"{object_name}_evolution.gif"
    if images:
        images[0].save(gif_path, save_all=True, append_images=images[1:], duration=1000, loop=0)

    return image_paths, gif_path


# =========================================================
# Gradio Interface
# =========================================================


def create_gradio_interface():
    with gr.Blocks() as demo:
        gr.Markdown("# TimeMetamorphy: An Object Evolution Generator")
        gr.Markdown("""
        Explore how everyday objects evolved over time. Enter an object name like "phone", "car", or "bicycle"
        and see its past, present, and future visualized with AI!
        """)
        #gr.Markdown("<span style='color: red;'>Note: If you experience issues connecting to the API while using the HF Space, try running the tool in this Colab Notebook instead — it may resolve the issue. <a href='https://colab.research.google.com/drive/1aKBJWkRBKhW8VFEu8p1zaxJr9VDzPaRz?usp=sharing' target='_blank'>Open Notebook</a>.</span>")
        gr.HTML("<p style='color: red; font-weight: bold;'>🚨 Note: If you experience issues connecting to the API (while using the HF Space), If that happens feel free to run the exact same app/code in this Colab Notebook (it solve the issue).<a href='https://colab.research.google.com/drive/1aKBJWkRBKhW8VFEu8p1zaxJr9VDzPaRz?usp=sharing' target='_blank' style='color: red; text-decoration: underline;'> Open Notebook</a>.</p>")


        default_images = [
            "car_past.png",
            "car_present.png",
            "car_future.png"
        ]
        default_gif_path = "car_evolution.gif"

        with gr.Row():
            with gr.Column():
                object_name_input = gr.Textbox(label="Enter an object name", placeholder="e.g. bicycle, car, phone")
                generate_button = gr.Button("Generate Evolution")
                image_gallery = gr.Gallery(label="Generated Images", columns=3, rows=1, value=default_images, type="filepath")
                gif_output = gr.Image(label="Generated GIF", value=default_gif_path, type="filepath")
                #image_gallery = gr.Gallery(label="Generated Images", columns=3, rows=1,  type="filepath")
                #gif_output = gr.Image(label="Generated GIF", type="filepath")

        generate_button.click(fn=generate_object_history, inputs=[object_name_input], outputs=[image_gallery, gif_output])

    return demo


# Launch the interface
demo = create_gradio_interface()
demo.launch()