File size: 3,072 Bytes
5954033
997d4ca
5954033
 
 
 
 
f0679c3
5954033
 
 
 
 
f0679c3
5954033
 
5acf0e3
5954033
 
 
5acf0e3
5954033
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
import gradio as gr
import tensorflow as tf
import numpy as np
import cv2
import os
from scipy.spatial.distance import cosine
from keras_facenet import FaceNet

# Load the FaceNet model
def load_facenet_model():
    facenet = FaceNet()
    model = facenet.model  # Access the Keras model in FaceNet
    return model

embedding_model = load_facenet_model()
embedding_model.load_weights('facenet_embedding.h5')

# Database to store embeddings and user IDs
user_embeddings = []
user_ids = []

# Threshold
RECOGNITION_THRESHOLD = 0.1 # Adjust as needed

# Preprocess the image for FaceNet
def preprocess_image(image):
    image = cv2.resize(image, (160, 160))  # Resize image to 160x160 for FaceNet
    image = image.astype('float32')
    mean, std = image.mean(), image.std()
    image = (image - mean) / std
    return np.expand_dims(image, axis=0)

# Generate embedding using FaceNet
def generate_embedding(image):
    preprocessed_image = preprocess_image(image)
    return embedding_model.predict(preprocessed_image)[0]

# Register new user
def register_user(image, user_id):
    try:
        embedding = generate_embedding(image)
        user_embeddings.append(embedding)
        user_ids.append(user_id)
        return f"User {user_id} registered successfully."
    except Exception as e:
        return f"Error during registration: {str(e)}"

# Recognize user 
def recognize_user(image):
    try:
        new_embedding = generate_embedding(image)
        closest_user_id = None
        closest_distance = float('inf')

        for user_id, embedding in zip(user_ids, user_embeddings):
            distance = cosine(new_embedding, embedding)
            print(f"Distance for {user_id}: {distance}")  # Debug: Print distances for each user
            if distance < closest_distance:
                closest_distance = distance
                closest_user_id = user_id

        print(f"Min distance: {closest_distance}")  # Debug: Print minimum distance

        if closest_distance <= RECOGNITION_THRESHOLD:
            return f"Recognized User: {closest_user_id}"
        else:
            return f"User not recognized. Closest Distance: {closest_distance}"
    except Exception as e:
        return f"Error during recognition: {str(e)}"


def main():
    with gr.Blocks() as demo:
        gr.Markdown("Facial Recognition System")
        with gr.Tab("Register"):
            with gr.Row():
                img_register = gr.Image()
                user_id = gr.Textbox(label="User ID")
                register_button = gr.Button("Register")
            register_output = gr.Textbox()
            register_button.click(register_user, inputs=[img_register, user_id], outputs=register_output)

        with gr.Tab("Recognize"):
            with gr.Row():
                img_recognize = gr.Image()
                recognize_button = gr.Button("Recognize")
            recognize_output = gr.Textbox()
            recognize_button.click(recognize_user, inputs=[img_recognize], outputs=recognize_output)

    demo.launch(share=True)

if __name__ == "__main__":
    main()