Spaces:
Runtime error
Runtime error
import gradio as gr | |
import tensorflow as tf | |
import numpy as np | |
from scipy.spatial.distance import cosine | |
import cv2 | |
import os | |
# Load the embedding model | |
embedding_model = tf.keras.models.load_model('embedding_model.h5') | |
# Database to store embeddings and user IDs | |
user_embeddings = {} | |
# Preprocess the image | |
def preprocess_image(image): | |
image = cv2.resize(image, (200, 200)) # Assuming your model expects 200x200 input | |
image = tf.keras.applications.resnet50.preprocess_input(image) | |
return np.expand_dims(image, axis=0) | |
# Generate embedding | |
def generate_embedding(image): | |
preprocessed_image = preprocess_image(image) | |
return embedding_model.predict(preprocessed_image)[0] | |
# Register new user | |
def register_user(image, user_id): | |
embedding = generate_embedding(image) | |
user_embeddings[user_id] = embedding | |
return f"User {user_id} registered successfully." | |
# Recognize user | |
def recognize_user(image): | |
new_embedding = generate_embedding(image) | |
min_distance = float('inf') | |
recognized_user_id = "Unknown" | |
for user_id, embedding in user_embeddings.items(): | |
distance = cosine(new_embedding, embedding) | |
if distance < min_distance: | |
min_distance = distance | |
recognized_user_id = user_id | |
return f"Recognized User: {recognized_user_id}" | |
# Gradio interface for registering users | |
register_interface = gr.Interface( | |
fn=register_user, | |
inputs=[gr.inputs.Image(shape=(200, 200)), gr.inputs.Textbox(label="User ID")], | |
outputs="text", | |
live=True | |
) | |
# Gradio interface for recognizing users | |
recognize_interface = gr.Interface( | |
fn=recognize_user, | |
inputs=gr.inputs.Image(shape=(200, 200)), | |
outputs="text", | |
live=True | |
) | |
if __name__ == "__main__": | |
register_interface.launch(share=True) | |
recognize_interface.launch(share=True) |