ImanAmran's picture
Create app.py
fd4b460
raw
history blame
1.84 kB
import gradio as gr
import tensorflow as tf
import numpy as np
from scipy.spatial.distance import cosine
import cv2
import os
# Load the embedding model
embedding_model = tf.keras.models.load_model('embedding_model.h5')
# Database to store embeddings and user IDs
user_embeddings = {}
# Preprocess the image
def preprocess_image(image):
image = cv2.resize(image, (200, 200)) # Assuming your model expects 200x200 input
image = tf.keras.applications.resnet50.preprocess_input(image)
return np.expand_dims(image, axis=0)
# Generate embedding
def generate_embedding(image):
preprocessed_image = preprocess_image(image)
return embedding_model.predict(preprocessed_image)[0]
# Register new user
def register_user(image, user_id):
embedding = generate_embedding(image)
user_embeddings[user_id] = embedding
return f"User {user_id} registered successfully."
# Recognize user
def recognize_user(image):
new_embedding = generate_embedding(image)
min_distance = float('inf')
recognized_user_id = "Unknown"
for user_id, embedding in user_embeddings.items():
distance = cosine(new_embedding, embedding)
if distance < min_distance:
min_distance = distance
recognized_user_id = user_id
return f"Recognized User: {recognized_user_id}"
# Gradio interface for registering users
register_interface = gr.Interface(
fn=register_user,
inputs=[gr.inputs.Image(shape=(200, 200)), gr.inputs.Textbox(label="User ID")],
outputs="text",
live=True
)
# Gradio interface for recognizing users
recognize_interface = gr.Interface(
fn=recognize_user,
inputs=gr.inputs.Image(shape=(200, 200)),
outputs="text",
live=True
)
if __name__ == "__main__":
register_interface.launch(share=True)
recognize_interface.launch(share=True)