File size: 17,448 Bytes
1f0b3af
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0aab0ed
1f0b3af
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b8d9e31
1f0b3af
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0aab0ed
1f0b3af
 
 
 
 
 
 
6640fa0
1f0b3af
 
6640fa0
1f0b3af
 
 
 
 
 
89e64c9
1f0b3af
6640fa0
1f0b3af
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6640fa0
1f0b3af
 
 
 
998d998
1f0b3af
 
 
89e64c9
1f0b3af
998d998
b8d9e31
1f0b3af
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6640fa0
1f0b3af
 
 
 
 
 
 
 
89e64c9
1f0b3af
6640fa0
b8d9e31
1f0b3af
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6640fa0
 
1f0b3af
 
6640fa0
1f0b3af
 
6640fa0
1f0b3af
 
6640fa0
0aab0ed
1f0b3af
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
import streamlit as st
import numpy as np

from st_btn_select import st_btn_select
from streamlit_option_menu import option_menu

from cgi import test
import streamlit as st
import pandas as pd
from PIL import Image
import os
import glob

from transformers import CLIPVisionModel, AutoTokenizer, AutoModel
from transformers import ViTFeatureExtractor, ViTForImageClassification

import torch
from tqdm import tqdm
from PIL import Image
import numpy as np
from torch.utils.data import DataLoader
from transformers import default_data_collator

from torch.utils.data import Dataset, DataLoader
import torchvision.transforms as transforms

from bokeh.models.widgets import Button
from bokeh.models import CustomJS
from streamlit_bokeh_events import streamlit_bokeh_events

from webcam import webcam

## Global Variables
MP3_ROOT_PATH = "sample_mp3/"
SPECTROGRAMS_PATH = "sample_spectrograms/"

IMAGE_SIZE = 224
MEAN = torch.tensor([0.48145466, 0.4578275, 0.40821073])
STD = torch.tensor([0.26862954, 0.26130258, 0.27577711])

TEXT_MODEL = 'bert-base-uncased'

CLIP_TEXT_MODEL_PATH = "text_model/"
CLIP_VISION_MODEL_PATH = "vision_model/"

## NavBar 
def streamlit_menu(example=1):
    if example == 1:
        # 1. as sidebar menu
        with st.sidebar:
            selected = option_menu(
                menu_title="Main Menu",  # required
                options=["Text", "Audio", "Camera"],  # required
                icons=["chat-text", "mic", "camera"],  # optional
                menu_icon="cast",  # optional
                default_index=0,  # optional
            )
        return selected

    if example == 2:
        # 2. horizontal menu w/o custom style
        selected = option_menu(
            menu_title=None,  # required
            options=["Text", "Audio", "Camera"],  # required
            icons=["chat-text", "mic", "camera"],  # optional
            menu_icon="cast",  # optional
            default_index=0,  # optional
            orientation="horizontal",
        )
        return selected

    if example == 3:
        # 2. horizontal menu with custom style
        selected = option_menu(
            menu_title=None,  # required
            options=["Text", "Audio", "Camera"],  # required
            icons=["chat-text", "mic", "camera"],  # optional
            menu_icon="cast",  # optional
            default_index=0,  # optional
            orientation="horizontal",
            styles={
                "container": {"padding": "0!important", "background-color": "#fafafa"},
                "icon": {"color": "#ffde59", "font-size": "25px"},
                "nav-link": {
                    "font-size": "25px",
                    "text-align": "left",
                    "margin": "0px",
                    "--hover-color": "#eee",
                },
                "nav-link-selected": {"background-color": "#5271ff"},
            },
        )
        return selected


## Draw Sidebar
def draw_sidebar(
    key,
    plot=False,
):

    st.write(
        """
        # Sidebar
        
        ```python
        Think.
        Search.
        Feel.
        ```
        """
    )

    st.slider("From 1 to 10, how cool is this app?", min_value=1, max_value=10, key=key)

    option = st_btn_select(('option1', 'option2', 'option3'), index=2)
    st.write(f'Selected option: {option}')

## Change Color
#def change_color(styles="")

## VisionDataset
class VisionDataset(Dataset):
    preprocess = transforms.Compose([
        transforms.Resize((IMAGE_SIZE, IMAGE_SIZE)),
        transforms.ToTensor(),
        transforms.Normalize(mean=MEAN, std=STD)
    ])

    def __init__(self, image_paths: list):
        self.image_paths = image_paths

    def __getitem__(self, idx):
        return self.preprocess(Image.open(self.image_paths[idx]).convert('RGB'))

    def __len__(self):
        return len(self.image_paths)

## TextDataset
class TextDataset(Dataset):
    def __init__(self, text: list, tokenizer, max_len):
        self.len = len(text)
        self.tokens = tokenizer(text, padding='max_length',
                                max_length=max_len, truncation=True)

    def __getitem__(self, idx):
        token = self.tokens[idx]
        return {'input_ids': token.ids, 'attention_mask': token.attention_mask}

    def __len__(self):
        return self.len

## CLIP Demo
class CLIPDemo:
    def __init__(self, vision_encoder, text_encoder, tokenizer,
                batch_size: int = 64, max_len: int = 64, device='cuda'):
        """ Initializes CLIPDemo
            it has the following functionalities:
                image_search: Search images based on text query
                zero_shot: Zero shot image classification
                analogy: Analogies with embedding space arithmetic.

            Args:
            vision_encoder: Fine-tuned vision encoder
            text_encoder: Fine-tuned text encoder
            tokenizer: Transformers tokenizer
            device (torch.device): Running device
            batch_size (int): Size of mini-batches used to embeddings
            max_length (int): Tokenizer max length

            Example:
            >>> demo = CLIPDemo(vision_encoder, text_encoder, tokenizer)
            >>> demo.compute_image_embeddings(test_df.image.to_list())
            >>> demo.image_search('یک مرد و یک زن')
            >>> demo.zero_shot('./workers.jpg')
            >>> demo.anology('./sunset.jpg', additional_text='دریا')
        """
        self.vision_encoder = vision_encoder.eval().to(device)
        self.text_encoder = text_encoder.eval().to(device)
        self.batch_size = batch_size
        self.device = device
        self.tokenizer = tokenizer
        self.max_len = max_len
        self.text_embeddings_ = None
        self.image_embeddings_ = None
        

    def compute_image_embeddings(self, image_paths: list):
        self.image_paths = image_paths
        dataloader = DataLoader(VisionDataset(
            image_paths=image_paths), batch_size=self.batch_size)
        embeddings = []
        with torch.no_grad():
            
            bar = st.progress(0)
            for i, images in tqdm(enumerate(dataloader), desc='computing image embeddings'):
                bar.progress(int(i/len(dataloader)*100))
                image_embedding = self.vision_encoder(
                    pixel_values=images.to(self.device)).pooler_output
                embeddings.append(image_embedding)
            bar.empty()
        self.image_embeddings_ =  torch.cat(embeddings)

    def compute_text_embeddings(self, text: list):
        self.text = text
        dataloader = DataLoader(TextDataset(text=text, tokenizer=self.tokenizer, max_len=self.max_len),
                                batch_size=self.batch_size, collate_fn=default_data_collator)
        embeddings = []
        with torch.no_grad():
            for tokens in tqdm(dataloader, desc='computing text embeddings'):
                image_embedding = self.text_encoder(input_ids=tokens["input_ids"].to(self.device),
                                                    attention_mask=tokens["attention_mask"].to(self.device)).pooler_output
                embeddings.append(image_embedding)
        self.text_embeddings_ = torch.cat(embeddings)

    def text_query_embedding(self, query: str = 'A happy song'):
        tokens = self.tokenizer(query, return_tensors='pt')
        with torch.no_grad():
            text_embedding = self.text_encoder(input_ids=tokens["input_ids"].to(self.device),
                                            attention_mask=tokens["attention_mask"].to(self.device)).pooler_output
        return text_embedding

    def most_similars(self, embeddings_1, embeddings_2):
        values, indices = torch.cosine_similarity(
            embeddings_1, embeddings_2).sort(descending=True)
        return values.cpu(), indices.cpu()


    def image_search(self, query: str, top_k=10):
        """ Search images based on text query
            Args:
                query (str): text query 
                image_paths (list[str]): a bunch of image paths
                top_k (int): number of relevant images 
        """
        query_embedding = self.text_query_embedding(query=query)
        _, indices = self.most_similars(self.image_embeddings_, query_embedding)

        matches = np.array(self.image_paths)[indices][:top_k]
        songs_path = []
        for match in matches:
            filename = os.path.split(match)[1]
            filename = int(filename.replace(".jpeg", ""))
            audio_path = MP3_ROOT_PATH + "/" + f"{filename:06d}"
            songs_path.append(audio_path)
        return songs_path

## Draw text page
def draw_text(
    key,
    plot=False,
    device=None,
):

    
    image = Image.open("data/logo.png")
    st.image(image, use_column_width="always")

    if 'model' not in st.session_state:
        #with st.spinner('We are orginizing your traks...'):
            text_encoder = AutoModel.from_pretrained(CLIP_TEXT_MODEL_PATH, local_files_only=True)
            vision_encoder = CLIPVisionModel.from_pretrained(CLIP_VISION_MODEL_PATH, local_files_only=True).to(device)
            tokenizer = AutoTokenizer.from_pretrained(TEXT_MODEL)
            model = CLIPDemo(vision_encoder=vision_encoder, text_encoder=text_encoder, tokenizer=tokenizer, device=device)
            model.compute_image_embeddings(glob.glob(SPECTROGRAMS_PATH + "/*.jpeg")[:1000])
            st.session_state["model"] = model


    ""
    ""

    moods = ['-', 'angry', 'calm', 'happy', 'sad']
    genres = ['-', 'house', 'pop', 'rock', 'techno']
    artists = ['-', 'bad dad', 'lazy magnet', 'the astronauts', 'yan yalego']
    years = ['-', '80s', '90s', '2000s', '2010s']

    col1, col2 = st.columns(2)
    mood = col1.selectbox('Which mood do you feel right now?', moods, help="Select a mood here")
    genre = col2.selectbox('Which genre do you want to listen?', genres, help="Select a genre here")
    artist = col1.selectbox('Which artist do you like best?', artists, help="Select an artist here")
    year = col2.selectbox('Which period do you want to relive?', years, help="Select a period here")
    button_form = st.button('Search', key="button_form")

    st.text_input("Otherwise, describe the song you are looking for!", value="", key="sentence")
    button_sentence = st.button('Search', key="button_sentence")
        
    if (button_sentence and st.session_state.sentence != "") or (button_form and not (mood == "-" and artist == "-" and genre == "-" and year == "-")):
        if button_sentence:
            sentence = st.session_state.sentence    
        elif button_form:
            sentence = mood if mood != "-" else ""
            sentence = sentence + " " + genre if genre != "-" else sentence
            sentence = sentence + " " + artist if artist != "-" else sentence
            sentence = sentence + " " + year if year != "-" else sentence

        song_paths = st.session_state.model.image_search(sentence)
        for song in song_paths:
            song_name = df.loc[df['track_id'] == int(song[-6:])]['track_title'].to_list()[0]
            artist_name = df.loc[df['track_id'] == int(song[-6:])]['artist_name'].to_list()[0]
            st.write('**"'+song_name+'"**' + ' by ' + artist_name)
            st.audio(song + ".mp3", format="audio/mp3", start_time=0)

## Draw audio page
def draw_audio(
    key,
    plot=False,
    device=None,
):

    image = Image.open("data/logo.png")
    st.image(image, use_column_width="always")
    
    if 'model' not in st.session_state:
        #with st.spinner('We are orginizing your traks...'):
            text_encoder = AutoModel.from_pretrained(CLIP_TEXT_MODEL_PATH, local_files_only=True)
            vision_encoder = CLIPVisionModel.from_pretrained(CLIP_VISION_MODEL_PATH, local_files_only=True).to(device)
            tokenizer = AutoTokenizer.from_pretrained(TEXT_MODEL)
            model = CLIPDemo(vision_encoder=vision_encoder, text_encoder=text_encoder, tokenizer=tokenizer, device=device)
            model.compute_image_embeddings(glob.glob(SPECTROGRAMS_PATH+"/*.jpeg")[:1000])
            st.session_state["model"] = model
            #st.session_state['model'] = CLIPDemo(vision_encoder=vision_encoder, text_encoder=text_encoder, tokenizer=tokenizer)
            #st.session_state.model.compute_image_embeddings(glob.glob("/data1/mlaquatra/TSOAI_hack/data/spectrograms/*.jpeg")[:100])
        #st.success('Done!')

    ""
    ""

    st.write("Please, describe the kind of song you are looking for!")
    stt_button = Button(label="Start Recording", margin=[5,5,5,200], width=200, default_size=10, width_policy='auto', button_type='primary')

    stt_button.js_on_event("button_click", CustomJS(code="""
        var recognition = new webkitSpeechRecognition();
        recognition.continuous = false;
        recognition.interimResults = true;
    
        recognition.onresult = function (e) {
            var value = "";
            for (var i = e.resultIndex; i < e.results.length; ++i) {
                if (e.results[i].isFinal) {
                    value += e.results[i][0].transcript;
                }
            }
            if ( value != "") {
                document.dispatchEvent(new CustomEvent("GET_TEXT", {detail: value}));
            }
        }
        recognition.start();
        """))


    result = streamlit_bokeh_events(
        stt_button,
        events="GET_TEXT",
        key="listen",
        refresh_on_update=False,
        override_height=75,
        debounce_time=0)
        
    if result:
        if "GET_TEXT" in result:
            sentence = result.get("GET_TEXT")
            st.write('You asked for: "' + sentence + '"')

        song_paths = st.session_state.model.image_search(sentence)
        for song in song_paths:
            song_name = df.loc[df['track_id'] == int(song[-6:])]['track_title'].to_list()[0]
            artist_name = df.loc[df['track_id'] == int(song[-6:])]['artist_name'].to_list()[0]
            st.write('**"'+song_name+'"**' + ' by ' + artist_name)
            st.audio(song + ".mp3", format="audio/mp3", start_time=0)

## Draw camera page
def draw_camera(
    key,
    plot=False,
    device=None,
):

    image = Image.open("data/logo.png")
    st.image(image, use_column_width="always")

    if 'model' not in st.session_state:
        #with st.spinner('We are orginizing your traks...'):
            text_encoder = AutoModel.from_pretrained(CLIP_TEXT_MODEL_PATH, local_files_only=True)
            vision_encoder = CLIPVisionModel.from_pretrained(CLIP_VISION_MODEL_PATH, local_files_only=True).to(device)
            tokenizer = AutoTokenizer.from_pretrained(TEXT_MODEL)
            model = CLIPDemo(vision_encoder=vision_encoder, text_encoder=text_encoder, tokenizer=tokenizer, device=device)
            model.compute_image_embeddings(glob.glob(SPECTROGRAMS_PATH + "/*.jpeg")[:1000])
            st.session_state["model"] = model
            #st.session_state['model'] = CLIPDemo(vision_encoder=vision_encoder, text_encoder=text_encoder, tokenizer=tokenizer)
            #st.session_state.model.compute_image_embeddings(glob.glob("/data1/mlaquatra/TSOAI_hack/data/spectrograms/*.jpeg")[:100])
        #st.success('Done!')

    ""
    ""

    st.write("Please, show us how you are feeling today!")
    captured_image = webcam()
    if captured_image is None:
        st.write("Waiting for capture...")
    else:
        # st.write("Got an image from the webcam:")
        
        # st.image(captured_image)

        # st.write(type(captured_image))
        # st.write(captured_image)
        # st.write(captured_image.size)

        captured_image = captured_image.convert("RGB")
    
        vit_feature_extractor = ViTFeatureExtractor.from_pretrained("google/vit-base-patch16-224-in21k")
        vit_model = ViTForImageClassification.from_pretrained("ViT_ER/best_checkpoint", local_files_only=True)
        inputs = vit_feature_extractor(images=[captured_image], return_tensors="pt")
        outputs = vit_model(**inputs, output_hidden_states=True)
        #st.write(outputs)
        emotions = ['Anger', 'Disgust', 'Fear', 'Happiness', 'Sadness', 'Surprise', 'Neutral']
        mood = emotions[np.argmax(outputs.logits.detach().cpu().numpy())]
        #st.write(mood)

        st.write(f"Your mood seems to be **{mood.lower()}** today! Here's a song for you that matches with how you feel!")
        
        song_paths = st.session_state.model.image_search(mood)
        for song in song_paths:
            song_name = df.loc[df['track_id'] == int(song[-6:])]['track_title'].to_list()[0]
            artist_name = df.loc[df['track_id'] == int(song[-6:])]['artist_name'].to_list()[0]
            st.write('**"'+song_name+'"**' + ' by ' + artist_name)
            st.audio(song + ".mp3", format="audio/mp3", start_time=0)


## Main 
selected = streamlit_menu(example=3)
df = pd.read_csv('full_metadata.csv', index_col=False)

device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")

if selected == "Text":
    # st.title(f"You have selected {selected}")
    draw_text("text", plot=True, device=device)
if selected == "Audio":
    # st.title(f"You have selected {selected}")
    draw_audio("audio", plot=True, device=device)
if selected == "Camera":
    # st.title(f"You have selected {selected}")
    #draw_camera("camera", plot=True, device=device)
    pass

# with st.sidebar:
#     draw_sidebar("sidebar")