File size: 17,448 Bytes
1f0b3af 0aab0ed 1f0b3af b8d9e31 1f0b3af 0aab0ed 1f0b3af 6640fa0 1f0b3af 6640fa0 1f0b3af 89e64c9 1f0b3af 6640fa0 1f0b3af 6640fa0 1f0b3af 998d998 1f0b3af 89e64c9 1f0b3af 998d998 b8d9e31 1f0b3af 6640fa0 1f0b3af 89e64c9 1f0b3af 6640fa0 b8d9e31 1f0b3af 6640fa0 1f0b3af 6640fa0 1f0b3af 6640fa0 1f0b3af 6640fa0 0aab0ed 1f0b3af |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 |
import streamlit as st
import numpy as np
from st_btn_select import st_btn_select
from streamlit_option_menu import option_menu
from cgi import test
import streamlit as st
import pandas as pd
from PIL import Image
import os
import glob
from transformers import CLIPVisionModel, AutoTokenizer, AutoModel
from transformers import ViTFeatureExtractor, ViTForImageClassification
import torch
from tqdm import tqdm
from PIL import Image
import numpy as np
from torch.utils.data import DataLoader
from transformers import default_data_collator
from torch.utils.data import Dataset, DataLoader
import torchvision.transforms as transforms
from bokeh.models.widgets import Button
from bokeh.models import CustomJS
from streamlit_bokeh_events import streamlit_bokeh_events
from webcam import webcam
## Global Variables
MP3_ROOT_PATH = "sample_mp3/"
SPECTROGRAMS_PATH = "sample_spectrograms/"
IMAGE_SIZE = 224
MEAN = torch.tensor([0.48145466, 0.4578275, 0.40821073])
STD = torch.tensor([0.26862954, 0.26130258, 0.27577711])
TEXT_MODEL = 'bert-base-uncased'
CLIP_TEXT_MODEL_PATH = "text_model/"
CLIP_VISION_MODEL_PATH = "vision_model/"
## NavBar
def streamlit_menu(example=1):
if example == 1:
# 1. as sidebar menu
with st.sidebar:
selected = option_menu(
menu_title="Main Menu", # required
options=["Text", "Audio", "Camera"], # required
icons=["chat-text", "mic", "camera"], # optional
menu_icon="cast", # optional
default_index=0, # optional
)
return selected
if example == 2:
# 2. horizontal menu w/o custom style
selected = option_menu(
menu_title=None, # required
options=["Text", "Audio", "Camera"], # required
icons=["chat-text", "mic", "camera"], # optional
menu_icon="cast", # optional
default_index=0, # optional
orientation="horizontal",
)
return selected
if example == 3:
# 2. horizontal menu with custom style
selected = option_menu(
menu_title=None, # required
options=["Text", "Audio", "Camera"], # required
icons=["chat-text", "mic", "camera"], # optional
menu_icon="cast", # optional
default_index=0, # optional
orientation="horizontal",
styles={
"container": {"padding": "0!important", "background-color": "#fafafa"},
"icon": {"color": "#ffde59", "font-size": "25px"},
"nav-link": {
"font-size": "25px",
"text-align": "left",
"margin": "0px",
"--hover-color": "#eee",
},
"nav-link-selected": {"background-color": "#5271ff"},
},
)
return selected
## Draw Sidebar
def draw_sidebar(
key,
plot=False,
):
st.write(
"""
# Sidebar
```python
Think.
Search.
Feel.
```
"""
)
st.slider("From 1 to 10, how cool is this app?", min_value=1, max_value=10, key=key)
option = st_btn_select(('option1', 'option2', 'option3'), index=2)
st.write(f'Selected option: {option}')
## Change Color
#def change_color(styles="")
## VisionDataset
class VisionDataset(Dataset):
preprocess = transforms.Compose([
transforms.Resize((IMAGE_SIZE, IMAGE_SIZE)),
transforms.ToTensor(),
transforms.Normalize(mean=MEAN, std=STD)
])
def __init__(self, image_paths: list):
self.image_paths = image_paths
def __getitem__(self, idx):
return self.preprocess(Image.open(self.image_paths[idx]).convert('RGB'))
def __len__(self):
return len(self.image_paths)
## TextDataset
class TextDataset(Dataset):
def __init__(self, text: list, tokenizer, max_len):
self.len = len(text)
self.tokens = tokenizer(text, padding='max_length',
max_length=max_len, truncation=True)
def __getitem__(self, idx):
token = self.tokens[idx]
return {'input_ids': token.ids, 'attention_mask': token.attention_mask}
def __len__(self):
return self.len
## CLIP Demo
class CLIPDemo:
def __init__(self, vision_encoder, text_encoder, tokenizer,
batch_size: int = 64, max_len: int = 64, device='cuda'):
""" Initializes CLIPDemo
it has the following functionalities:
image_search: Search images based on text query
zero_shot: Zero shot image classification
analogy: Analogies with embedding space arithmetic.
Args:
vision_encoder: Fine-tuned vision encoder
text_encoder: Fine-tuned text encoder
tokenizer: Transformers tokenizer
device (torch.device): Running device
batch_size (int): Size of mini-batches used to embeddings
max_length (int): Tokenizer max length
Example:
>>> demo = CLIPDemo(vision_encoder, text_encoder, tokenizer)
>>> demo.compute_image_embeddings(test_df.image.to_list())
>>> demo.image_search('یک مرد و یک زن')
>>> demo.zero_shot('./workers.jpg')
>>> demo.anology('./sunset.jpg', additional_text='دریا')
"""
self.vision_encoder = vision_encoder.eval().to(device)
self.text_encoder = text_encoder.eval().to(device)
self.batch_size = batch_size
self.device = device
self.tokenizer = tokenizer
self.max_len = max_len
self.text_embeddings_ = None
self.image_embeddings_ = None
def compute_image_embeddings(self, image_paths: list):
self.image_paths = image_paths
dataloader = DataLoader(VisionDataset(
image_paths=image_paths), batch_size=self.batch_size)
embeddings = []
with torch.no_grad():
bar = st.progress(0)
for i, images in tqdm(enumerate(dataloader), desc='computing image embeddings'):
bar.progress(int(i/len(dataloader)*100))
image_embedding = self.vision_encoder(
pixel_values=images.to(self.device)).pooler_output
embeddings.append(image_embedding)
bar.empty()
self.image_embeddings_ = torch.cat(embeddings)
def compute_text_embeddings(self, text: list):
self.text = text
dataloader = DataLoader(TextDataset(text=text, tokenizer=self.tokenizer, max_len=self.max_len),
batch_size=self.batch_size, collate_fn=default_data_collator)
embeddings = []
with torch.no_grad():
for tokens in tqdm(dataloader, desc='computing text embeddings'):
image_embedding = self.text_encoder(input_ids=tokens["input_ids"].to(self.device),
attention_mask=tokens["attention_mask"].to(self.device)).pooler_output
embeddings.append(image_embedding)
self.text_embeddings_ = torch.cat(embeddings)
def text_query_embedding(self, query: str = 'A happy song'):
tokens = self.tokenizer(query, return_tensors='pt')
with torch.no_grad():
text_embedding = self.text_encoder(input_ids=tokens["input_ids"].to(self.device),
attention_mask=tokens["attention_mask"].to(self.device)).pooler_output
return text_embedding
def most_similars(self, embeddings_1, embeddings_2):
values, indices = torch.cosine_similarity(
embeddings_1, embeddings_2).sort(descending=True)
return values.cpu(), indices.cpu()
def image_search(self, query: str, top_k=10):
""" Search images based on text query
Args:
query (str): text query
image_paths (list[str]): a bunch of image paths
top_k (int): number of relevant images
"""
query_embedding = self.text_query_embedding(query=query)
_, indices = self.most_similars(self.image_embeddings_, query_embedding)
matches = np.array(self.image_paths)[indices][:top_k]
songs_path = []
for match in matches:
filename = os.path.split(match)[1]
filename = int(filename.replace(".jpeg", ""))
audio_path = MP3_ROOT_PATH + "/" + f"{filename:06d}"
songs_path.append(audio_path)
return songs_path
## Draw text page
def draw_text(
key,
plot=False,
device=None,
):
image = Image.open("data/logo.png")
st.image(image, use_column_width="always")
if 'model' not in st.session_state:
#with st.spinner('We are orginizing your traks...'):
text_encoder = AutoModel.from_pretrained(CLIP_TEXT_MODEL_PATH, local_files_only=True)
vision_encoder = CLIPVisionModel.from_pretrained(CLIP_VISION_MODEL_PATH, local_files_only=True).to(device)
tokenizer = AutoTokenizer.from_pretrained(TEXT_MODEL)
model = CLIPDemo(vision_encoder=vision_encoder, text_encoder=text_encoder, tokenizer=tokenizer, device=device)
model.compute_image_embeddings(glob.glob(SPECTROGRAMS_PATH + "/*.jpeg")[:1000])
st.session_state["model"] = model
""
""
moods = ['-', 'angry', 'calm', 'happy', 'sad']
genres = ['-', 'house', 'pop', 'rock', 'techno']
artists = ['-', 'bad dad', 'lazy magnet', 'the astronauts', 'yan yalego']
years = ['-', '80s', '90s', '2000s', '2010s']
col1, col2 = st.columns(2)
mood = col1.selectbox('Which mood do you feel right now?', moods, help="Select a mood here")
genre = col2.selectbox('Which genre do you want to listen?', genres, help="Select a genre here")
artist = col1.selectbox('Which artist do you like best?', artists, help="Select an artist here")
year = col2.selectbox('Which period do you want to relive?', years, help="Select a period here")
button_form = st.button('Search', key="button_form")
st.text_input("Otherwise, describe the song you are looking for!", value="", key="sentence")
button_sentence = st.button('Search', key="button_sentence")
if (button_sentence and st.session_state.sentence != "") or (button_form and not (mood == "-" and artist == "-" and genre == "-" and year == "-")):
if button_sentence:
sentence = st.session_state.sentence
elif button_form:
sentence = mood if mood != "-" else ""
sentence = sentence + " " + genre if genre != "-" else sentence
sentence = sentence + " " + artist if artist != "-" else sentence
sentence = sentence + " " + year if year != "-" else sentence
song_paths = st.session_state.model.image_search(sentence)
for song in song_paths:
song_name = df.loc[df['track_id'] == int(song[-6:])]['track_title'].to_list()[0]
artist_name = df.loc[df['track_id'] == int(song[-6:])]['artist_name'].to_list()[0]
st.write('**"'+song_name+'"**' + ' by ' + artist_name)
st.audio(song + ".mp3", format="audio/mp3", start_time=0)
## Draw audio page
def draw_audio(
key,
plot=False,
device=None,
):
image = Image.open("data/logo.png")
st.image(image, use_column_width="always")
if 'model' not in st.session_state:
#with st.spinner('We are orginizing your traks...'):
text_encoder = AutoModel.from_pretrained(CLIP_TEXT_MODEL_PATH, local_files_only=True)
vision_encoder = CLIPVisionModel.from_pretrained(CLIP_VISION_MODEL_PATH, local_files_only=True).to(device)
tokenizer = AutoTokenizer.from_pretrained(TEXT_MODEL)
model = CLIPDemo(vision_encoder=vision_encoder, text_encoder=text_encoder, tokenizer=tokenizer, device=device)
model.compute_image_embeddings(glob.glob(SPECTROGRAMS_PATH+"/*.jpeg")[:1000])
st.session_state["model"] = model
#st.session_state['model'] = CLIPDemo(vision_encoder=vision_encoder, text_encoder=text_encoder, tokenizer=tokenizer)
#st.session_state.model.compute_image_embeddings(glob.glob("/data1/mlaquatra/TSOAI_hack/data/spectrograms/*.jpeg")[:100])
#st.success('Done!')
""
""
st.write("Please, describe the kind of song you are looking for!")
stt_button = Button(label="Start Recording", margin=[5,5,5,200], width=200, default_size=10, width_policy='auto', button_type='primary')
stt_button.js_on_event("button_click", CustomJS(code="""
var recognition = new webkitSpeechRecognition();
recognition.continuous = false;
recognition.interimResults = true;
recognition.onresult = function (e) {
var value = "";
for (var i = e.resultIndex; i < e.results.length; ++i) {
if (e.results[i].isFinal) {
value += e.results[i][0].transcript;
}
}
if ( value != "") {
document.dispatchEvent(new CustomEvent("GET_TEXT", {detail: value}));
}
}
recognition.start();
"""))
result = streamlit_bokeh_events(
stt_button,
events="GET_TEXT",
key="listen",
refresh_on_update=False,
override_height=75,
debounce_time=0)
if result:
if "GET_TEXT" in result:
sentence = result.get("GET_TEXT")
st.write('You asked for: "' + sentence + '"')
song_paths = st.session_state.model.image_search(sentence)
for song in song_paths:
song_name = df.loc[df['track_id'] == int(song[-6:])]['track_title'].to_list()[0]
artist_name = df.loc[df['track_id'] == int(song[-6:])]['artist_name'].to_list()[0]
st.write('**"'+song_name+'"**' + ' by ' + artist_name)
st.audio(song + ".mp3", format="audio/mp3", start_time=0)
## Draw camera page
def draw_camera(
key,
plot=False,
device=None,
):
image = Image.open("data/logo.png")
st.image(image, use_column_width="always")
if 'model' not in st.session_state:
#with st.spinner('We are orginizing your traks...'):
text_encoder = AutoModel.from_pretrained(CLIP_TEXT_MODEL_PATH, local_files_only=True)
vision_encoder = CLIPVisionModel.from_pretrained(CLIP_VISION_MODEL_PATH, local_files_only=True).to(device)
tokenizer = AutoTokenizer.from_pretrained(TEXT_MODEL)
model = CLIPDemo(vision_encoder=vision_encoder, text_encoder=text_encoder, tokenizer=tokenizer, device=device)
model.compute_image_embeddings(glob.glob(SPECTROGRAMS_PATH + "/*.jpeg")[:1000])
st.session_state["model"] = model
#st.session_state['model'] = CLIPDemo(vision_encoder=vision_encoder, text_encoder=text_encoder, tokenizer=tokenizer)
#st.session_state.model.compute_image_embeddings(glob.glob("/data1/mlaquatra/TSOAI_hack/data/spectrograms/*.jpeg")[:100])
#st.success('Done!')
""
""
st.write("Please, show us how you are feeling today!")
captured_image = webcam()
if captured_image is None:
st.write("Waiting for capture...")
else:
# st.write("Got an image from the webcam:")
# st.image(captured_image)
# st.write(type(captured_image))
# st.write(captured_image)
# st.write(captured_image.size)
captured_image = captured_image.convert("RGB")
vit_feature_extractor = ViTFeatureExtractor.from_pretrained("google/vit-base-patch16-224-in21k")
vit_model = ViTForImageClassification.from_pretrained("ViT_ER/best_checkpoint", local_files_only=True)
inputs = vit_feature_extractor(images=[captured_image], return_tensors="pt")
outputs = vit_model(**inputs, output_hidden_states=True)
#st.write(outputs)
emotions = ['Anger', 'Disgust', 'Fear', 'Happiness', 'Sadness', 'Surprise', 'Neutral']
mood = emotions[np.argmax(outputs.logits.detach().cpu().numpy())]
#st.write(mood)
st.write(f"Your mood seems to be **{mood.lower()}** today! Here's a song for you that matches with how you feel!")
song_paths = st.session_state.model.image_search(mood)
for song in song_paths:
song_name = df.loc[df['track_id'] == int(song[-6:])]['track_title'].to_list()[0]
artist_name = df.loc[df['track_id'] == int(song[-6:])]['artist_name'].to_list()[0]
st.write('**"'+song_name+'"**' + ' by ' + artist_name)
st.audio(song + ".mp3", format="audio/mp3", start_time=0)
## Main
selected = streamlit_menu(example=3)
df = pd.read_csv('full_metadata.csv', index_col=False)
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
if selected == "Text":
# st.title(f"You have selected {selected}")
draw_text("text", plot=True, device=device)
if selected == "Audio":
# st.title(f"You have selected {selected}")
draw_audio("audio", plot=True, device=device)
if selected == "Camera":
# st.title(f"You have selected {selected}")
#draw_camera("camera", plot=True, device=device)
pass
# with st.sidebar:
# draw_sidebar("sidebar")
|