Spaces:
Running
Running
#modules/morphosyntax/morphosyntax_interface.py | |
import streamlit as st | |
from streamlit_float import * | |
from streamlit_antd_components import * | |
from streamlit.components.v1 import html | |
import base64 | |
from .morphosyntax_process import process_morphosyntactic_input | |
from ..chatbot.chatbot import initialize_chatbot | |
from ..utils.widget_utils import generate_unique_key | |
from ..database.database_oldFromV2 import store_morphosyntax_result | |
import logging | |
logger = logging.getLogger(__name__) | |
####################### VERSION ANTERIOR A LAS 20:00 24-9-24 | |
def display_morphosyntax_interface(lang_code, nlp_models, t): | |
# Estilo CSS personalizado | |
st.markdown(""" | |
<style> | |
.morpho-initial-message { | |
background-color: #f0f2f6; | |
border-left: 5px solid #4CAF50; | |
padding: 10px; | |
border-radius: 5px; | |
font-size: 16px; | |
margin-bottom: 20px; | |
} | |
</style> | |
""", unsafe_allow_html=True) | |
# Mostrar el mensaje inicial como un párrafo estilizado | |
st.markdown(f""" | |
<div class="morpho-initial-message"> | |
{t['morpho_initial_message']} | |
</div> | |
""", unsafe_allow_html=True) | |
# Inicializar el chatbot si no existe | |
if 'morphosyntax_chatbot' not in st.session_state: | |
st.session_state.morphosyntax_chatbot = initialize_chatbot('morphosyntactic') | |
# Crear un contenedor para el chat | |
chat_container = st.container() | |
# Mostrar el historial del chat | |
with chat_container: | |
if 'morphosyntax_chat_history' not in st.session_state: | |
st.session_state.morphosyntax_chat_history = [] | |
for i, message in enumerate(st.session_state.morphosyntax_chat_history): | |
with st.chat_message(message["role"]): | |
st.write(message["content"]) | |
if "visualizations" in message: | |
for viz in message["visualizations"]: | |
st.components.v1.html( | |
f""" | |
<div style="width: 100%; overflow-x: auto; white-space: nowrap;"> | |
<div style="min-width: 1200px;"> | |
{viz} | |
</div> | |
</div> | |
""", | |
height=370, | |
scrolling=True | |
) | |
# Input del usuario | |
user_input = st.chat_input( | |
t['morpho_input_label'], | |
key=generate_unique_key('morphosyntax', "chat_input") | |
) | |
if user_input: | |
# Añadir el mensaje del usuario al historial | |
st.session_state.morphosyntax_chat_history.append({"role": "user", "content": user_input}) | |
# Mostrar indicador de carga | |
with st.spinner(t.get('processing', 'Processing...')): | |
try: | |
# Procesar el input del usuario | |
response, visualizations, result = process_morphosyntactic_input(user_input, lang_code, nlp_models, t) | |
# Añadir la respuesta al historial | |
message = { | |
"role": "assistant", | |
"content": response | |
} | |
if visualizations: | |
message["visualizations"] = visualizations | |
st.session_state.morphosyntax_chat_history.append(message) | |
# Mostrar la respuesta más reciente | |
with st.chat_message("assistant"): | |
st.write(response) | |
if visualizations: | |
for i, viz in enumerate(visualizations): | |
st.components.v1.html( | |
f""" | |
<div style="width: 100%; overflow-x: auto; white-space: nowrap;"> | |
<div style="min-width: 1200px;"> | |
{viz} | |
</div> | |
</div> | |
""", | |
height=350, | |
scrolling=True | |
) | |
# Si es un análisis, guardarlo en la base de datos | |
if user_input.startswith('/analisis_morfosintactico') and result: | |
store_morphosyntax_result( | |
st.session_state.username, | |
user_input.split('[', 1)[1].rsplit(']', 1)[0], # texto analizado | |
result.get('repeated_words', {}), | |
visualizations, | |
result.get('pos_analysis', []), | |
result.get('morphological_analysis', []), | |
result.get('sentence_structure', []) | |
) | |
except Exception as e: | |
st.error(f"{t['error_processing']}: {str(e)}") | |
# Si es un análisis, guardarlo en la base de datos | |
if user_input.startswith('/analisis_morfosintactico') and result: | |
store_morphosyntax_result( | |
st.session_state.username, | |
user_input.split('[', 1)[1].rsplit(']', 1)[0], # texto analizado | |
result['repeated_words'], | |
visualizations, # Ahora pasamos todas las visualizaciones | |
result['pos_analysis'], | |
result['morphological_analysis'], | |
result['sentence_structure'] | |
) | |
# Forzar la actualización de la interfaz | |
st.rerun() | |
# Botón para limpiar el historial del chat | |
if st.button(t['clear_chat'], key=generate_unique_key('morphosyntax', 'clear_chat')): | |
st.session_state.morphosyntax_chat_history = [] | |
st.rerun() | |
''' | |
############ MODULO PARA DEPURACIÓN Y PRUEBAS ##################################################### | |
def display_morphosyntax_interface(lang_code, nlp_models, t): | |
st.subheader(t['morpho_title']) | |
text_input = st.text_area( | |
t['warning_message'], | |
height=150, | |
key=generate_unique_key("morphosyntax", "text_area") | |
) | |
if st.button( | |
t['results_title'], | |
key=generate_unique_key("morphosyntax", "analyze_button") | |
): | |
if text_input: | |
# Aquí iría tu lógica de análisis morfosintáctico | |
# Por ahora, solo mostraremos un mensaje de placeholder | |
st.info(t['analysis_placeholder']) | |
else: | |
st.warning(t['no_text_warning']) | |
### | |
################################################# | |
''' | |