Spaces:
Running
Running
# Importaciones generales | |
import sys | |
import streamlit as st | |
from translations import get_translations | |
import re | |
import io | |
from io import BytesIO | |
import base64 | |
import matplotlib.pyplot as plt | |
import plotly.graph_objects as go | |
import pandas as pd | |
import numpy as np | |
import time | |
from datetime import datetime | |
from streamlit_player import st_player # Necesitar谩s instalar esta librer铆a: pip install streamlit-player | |
from spacy import displacy | |
import logging | |
import random | |
###################################################### | |
# Configuraci贸n del logger | |
logging.basicConfig(level=logging.INFO) | |
logger = logging.getLogger(__name__) | |
###################################################### | |
# Importaciones locales | |
from ..email.email import send_email_notification | |
###################################################### | |
# Importaciones locales de autenticaci贸n y base de datos | |
from ..auth.auth import ( | |
authenticate_user, | |
register_user | |
) | |
###################################################### | |
from ..database.database_oldFromV2 import ( | |
create_admin_user, | |
create_student_user, | |
get_user, | |
get_student_data, | |
store_file_contents, #gesti贸n archivos | |
retrieve_file_contents, #gesti贸n archivos | |
get_user_files, #gesti贸n archivos | |
delete_file, # #gesti贸n archivos | |
store_application_request, # form | |
store_user_feedback, # form | |
store_morphosyntax_result, | |
store_semantic_result, | |
store_discourse_analysis_result, | |
store_chat_history, | |
export_analysis_and_chat | |
) | |
###################################################### | |
# Importaciones locales de uiadmin | |
from ..admin.admin_ui import admin_page | |
###################################################### | |
# Importaciones locales funciones de an谩lisis | |
from ..text_analysis.morpho_analysis import ( | |
generate_arc_diagram, | |
get_repeated_words_colors, | |
highlight_repeated_words, | |
POS_COLORS, | |
POS_TRANSLATIONS, | |
perform_advanced_morphosyntactic_analysis | |
) | |
###################################################### | |
from ..text_analysis.semantic_analysis import ( | |
#visualize_semantic_relations, | |
perform_semantic_analysis, | |
create_concept_graph, | |
visualize_concept_graph | |
) | |
###################################################### | |
from ..text_analysis.discourse_analysis import ( | |
perform_discourse_analysis, | |
display_discourse_analysis_results | |
) | |
###################################################### | |
from ..chatbot.chatbot import ( | |
initialize_chatbot, | |
process_morphosyntactic_input, | |
process_semantic_input, | |
process_discourse_input, | |
process_chat_input, | |
get_connectors, | |
handle_semantic_commands, | |
generate_topics_visualization, | |
extract_topics, | |
get_semantic_chatbot_response | |
) | |
#####################-- Funciones de inicializaci贸n y configuraci贸n--- ############################################################################## | |
def initialize_session_state(): | |
if 'initialized' not in st.session_state: | |
st.session_state.clear() | |
st.session_state.initialized = True | |
st.session_state.logged_in = False | |
st.session_state.page = 'login' | |
st.session_state.username = None | |
st.session_state.role = None | |
def main(): | |
initialize_session_state() | |
print(f"P谩gina actual: {st.session_state.page}") | |
print(f"Rol del usuario: {st.session_state.role}") | |
if st.session_state.page == 'login': | |
login_register_page() | |
elif st.session_state.page == 'admin': | |
print("Intentando mostrar p谩gina de admin") | |
admin_page() | |
elif st.session_state.page == 'user': | |
user_page() | |
else: | |
print(f"P谩gina no reconocida: {st.session_state.page}") | |
print(f"Estado final de la sesi贸n: {st.session_state}") | |
#############################--- # Funciones de autenticaci贸n y registro --- ##################################################################### | |
def login_register_page(): | |
st.title("AIdeaText") | |
left_column, right_column = st.columns([1, 3]) | |
with left_column: | |
tab1, tab2 = st.tabs(["Iniciar Sesi贸n", "Registrarse"]) | |
with tab1: | |
login_form() | |
with tab2: | |
register_form() | |
with right_column: | |
display_videos_and_info() | |
def login_form(): | |
with st.form("login_form"): | |
username = st.text_input("Correo electr贸nico") | |
password = st.text_input("Contrase帽a", type="password") | |
submit_button = st.form_submit_button("Iniciar Sesi贸n") | |
if submit_button: | |
success, role = authenticate_user(username, password) | |
if success: | |
st.session_state.logged_in = True | |
st.session_state.username = username | |
st.session_state.role = role | |
st.session_state.page = 'admin' if role == 'Administrador' else 'user' | |
st.experimental_rerun() | |
else: | |
st.error("Credenciales incorrectas") | |
def register_form(): | |
st.header("Solicitar prueba de la aplicaci贸n") | |
name = st.text_input("Nombre completo") | |
email = st.text_input("Correo electr贸nico institucional") | |
institution = st.text_input("Instituci贸n") | |
role = st.selectbox("Rol", ["Estudiante", "Profesor", "Investigador", "Otro"]) | |
reason = st.text_area("驴Por qu茅 est谩s interesado en probar AIdeaText?") | |
if st.button("Enviar solicitud"): | |
logger.info(f"Attempting to submit application for {email}") | |
logger.debug(f"Form data: name={name}, email={email}, institution={institution}, role={role}, reason={reason}") | |
if not name or not email or not institution or not reason: | |
logger.warning("Incomplete form submission") | |
st.error("Por favor, completa todos los campos.") | |
elif not is_institutional_email(email): | |
logger.warning(f"Non-institutional email used: {email}") | |
st.error("Por favor, utiliza un correo electr贸nico institucional.") | |
else: | |
logger.info(f"Attempting to store application for {email}") | |
success = store_application_request(name, email, institution, role, reason) | |
if success: | |
st.success("Tu solicitud ha sido enviada. Te contactaremos pronto.") | |
logger.info(f"Application request stored successfully for {email}") | |
else: | |
st.error("Hubo un problema al enviar tu solicitud. Por favor, intenta de nuevo m谩s tarde.") | |
logger.error(f"Failed to store application request for {email}") | |
def is_institutional_email(email): | |
forbidden_domains = ['gmail.com', 'hotmail.com', 'yahoo.com', 'outlook.com'] | |
return not any(domain in email.lower() for domain in forbidden_domains) | |
###########################################--- Funciones de interfaz general --- ###################################################### | |
def user_page(): | |
# Asumimos que el idioma seleccionado est谩 almacenado en st.session_state.lang_code | |
# Si no est谩 definido, usamos 'es' como valor predeterminado | |
t = get_translations(lang_code) | |
st.title(t['welcome']) | |
st.write(f"{t['hello']}, {st.session_state.username}") | |
# Dividir la pantalla en dos columnas | |
col1, col2 = st.columns(2) | |
with col1: | |
st.subheader(t['chat_title']) | |
display_chatbot_interface(lang_code) | |
with col2: | |
st.subheader(t['results_title']) | |
if 'current_analysis' in st.session_state and st.session_state.current_analysis is not None: | |
display_analysis_results(st.session_state.current_analysis, lang_code) | |
if st.button(t['export_button']): | |
if export_analysis_and_chat(st.session_state.username, st.session_state.current_analysis, st.session_state.messages): | |
st.success(t['export_success']) | |
else: | |
st.error(t['export_error']) | |
else: | |
st.info(t['no_analysis']) | |
def admin_page(): | |
st.title("Panel de Administraci贸n") | |
st.write(f"Bienvenida, {st.session_state.username}") | |
st.header("Crear Nuevo Usuario Estudiante") | |
new_username = st.text_input("Correo electr贸nico del nuevo usuario", key="admin_new_username") | |
new_password = st.text_input("Contrase帽a", type="password", key="admin_new_password") | |
if st.button("Crear Usuario", key="admin_create_user"): | |
if create_student_user(new_username, new_password): | |
st.success(f"Usuario estudiante {new_username} creado exitosamente") | |
else: | |
st.error("Error al crear el usuario estudiante") | |
# Aqu铆 puedes a帽adir m谩s funcionalidades para el panel de administraci贸n | |
def display_videos_and_info(): | |
st.header("Videos: pitch, demos, entrevistas, otros") | |
videos = { | |
"Presentaci贸n en PyCon Colombia, Medell铆n, 2024": "https://www.youtube.com/watch?v=Jn545-IKx5Q", | |
"Presentaci贸n fundaci贸n Ser Maaestro": "https://www.youtube.com/watch?v=imc4TI1q164", | |
"Pitch IFE Explora": "https://www.youtube.com/watch?v=Fqi4Di_Rj_s", | |
"Entrevista Dr. Guillermo Ru铆z": "https://www.youtube.com/watch?v=_ch8cRja3oc", | |
"Demo versi贸n desktop": "https://www.youtube.com/watch?v=nP6eXbog-ZY" | |
} | |
selected_title = st.selectbox("Selecciona un video tutorial:", list(videos.keys())) | |
if selected_title in videos: | |
try: | |
st_player(videos[selected_title]) | |
except Exception as e: | |
st.error(f"Error al cargar el video: {str(e)}") | |
st.markdown(""" | |
## Novedades de la versi贸n actual | |
- Nueva funci贸n de an谩lisis sem谩ntico | |
- Soporte para m煤ltiples idiomas | |
- Interfaz mejorada para una mejor experiencia de usuario | |
""") | |
def display_feedback_form(lang_code, t): | |
logging.info(f"display_feedback_form called with lang_code: {lang_code}") | |
st.header(t['title']) | |
name = st.text_input(t['name'], key=f"feedback_name_{lang_code}") | |
email = st.text_input(t['email'], key=f"feedback_email_{lang_code}") | |
feedback = st.text_area(t['feedback'], key=f"feedback_text_{lang_code}") | |
if st.button(t['submit'], key=f"feedback_submit_{lang_code}"): | |
if name and email and feedback: | |
if store_user_feedback(st.session_state.username, name, email, feedback): | |
st.success(t['success']) | |
else: | |
st.error(t['error']) | |
else: | |
st.warning("Por favor, completa todos los campos.") | |
def display_student_progress(username, lang_code, t): | |
student_data = get_student_data(username) | |
if student_data is None or len(student_data['entries']) == 0: | |
st.warning("No se encontraron datos para este estudiante.") | |
st.info("Intenta realizar algunos an谩lisis de texto primero.") | |
return | |
st.title(f"Progreso de {username}") | |
with st.expander("Resumen de Actividades y Progreso", expanded=True): | |
# Resumen de actividades | |
total_entries = len(student_data['entries']) | |
st.write(f"Total de an谩lisis realizados: {total_entries}") | |
# Gr谩fico de tipos de an谩lisis | |
analysis_types = [entry['analysis_type'] for entry in student_data['entries']] | |
analysis_counts = pd.Series(analysis_types).value_counts() | |
fig, ax = plt.subplots() | |
analysis_counts.plot(kind='bar', ax=ax) | |
ax.set_title("Tipos de an谩lisis realizados") | |
ax.set_xlabel("Tipo de an谩lisis") | |
ax.set_ylabel("Cantidad") | |
st.pyplot(fig) | |
# Progreso a lo largo del tiempo | |
dates = [datetime.fromisoformat(entry['timestamp']) for entry in student_data['entries']] | |
analysis_counts = pd.Series(dates).value_counts().sort_index() | |
fig, ax = plt.subplots() | |
analysis_counts.plot(kind='line', ax=ax) | |
ax.set_title("An谩lisis realizados a lo largo del tiempo") | |
ax.set_xlabel("Fecha") | |
ax.set_ylabel("Cantidad de an谩lisis") | |
st.pyplot(fig) | |
########################################################## | |
with st.expander("Hist贸rico de An谩lisis Morfosint谩cticos"): | |
morphosyntax_entries = [entry for entry in student_data['entries'] if entry['analysis_type'] == 'morphosyntax'] | |
for entry in morphosyntax_entries: | |
st.subheader(f"An谩lisis del {entry['timestamp']}") | |
if entry['arc_diagrams']: | |
st.write(entry['arc_diagrams'][0], unsafe_allow_html=True) | |
########################################################## | |
with st.expander("Hist贸rico de An谩lisis Sem谩nticos"): | |
semantic_entries = [entry for entry in student_data['entries'] if entry['analysis_type'] == 'semantic'] | |
for entry in semantic_entries: | |
st.subheader(f"An谩lisis del {entry['timestamp']}") | |
# Mostrar conceptos clave | |
if 'key_concepts' in entry: | |
st.write("Conceptos clave:") | |
concepts_str = " | ".join([f"{concept} ({frequency:.2f})" for concept, frequency in entry['key_concepts']]) | |
#st.write("Conceptos clave:") | |
#st.write(concepts_str) | |
st.markdown(f"<div style='background-color: #f0f2f6; padding: 10px; border-radius: 5px;'>{concepts_str}</div>", unsafe_allow_html=True) | |
# Mostrar gr谩fico | |
if 'graph' in entry: | |
try: | |
img_bytes = base64.b64decode(entry['graph']) | |
st.image(img_bytes, caption="Gr谩fico de relaciones conceptuales") | |
except Exception as e: | |
st.error(f"No se pudo mostrar el gr谩fico: {str(e)}") | |
########################################################## | |
with st.expander("Hist贸rico de An谩lisis Discursivos"): | |
discourse_entries = [entry for entry in student_data['entries'] if entry['analysis_type'] == 'discourse'] | |
for entry in discourse_entries: | |
st.subheader(f"An谩lisis del {entry['timestamp']}") | |
# Mostrar conceptos clave para ambos documentos | |
if 'key_concepts1' in entry: | |
concepts_str1 = " | ".join([f"{concept} ({frequency:.2f})" for concept, frequency in entry['key_concepts1']]) | |
st.write("Conceptos clave del documento 1:") | |
#st.write(concepts_str1) | |
st.markdown(f"<div style='background-color: #f0f2f6; padding: 10px; border-radius: 5px;'>{concepts_str1}</div>", unsafe_allow_html=True) | |
if 'key_concepts2' in entry: | |
concepts_str2 = " | ".join([f"{concept} ({frequency:.2f})" for concept, frequency in entry['key_concepts2']]) | |
st.write("Conceptos clave del documento 2:") | |
#st.write(concepts_str2) | |
st.markdown(f"<div style='background-color: #f0f2f6; padding: 10px; border-radius: 5px;'>{concepts_str2}</div>", unsafe_allow_html=True) | |
try: | |
if 'combined_graph' in entry and entry['combined_graph']: | |
img_bytes = base64.b64decode(entry['combined_graph']) | |
st.image(img_bytes) | |
elif 'graph1' in entry and 'graph2' in entry: | |
col1, col2 = st.columns(2) | |
with col1: | |
if entry['graph1']: | |
img_bytes1 = base64.b64decode(entry['graph1']) | |
st.image(img_bytes1) | |
with col2: | |
if entry['graph2']: | |
img_bytes2 = base64.b64decode(entry['graph2']) | |
st.image(img_bytes2) | |
else: | |
st.write("No se encontraron gr谩ficos para este an谩lisis.") | |
except Exception as e: | |
st.error(f"No se pudieron mostrar los gr谩ficos: {str(e)}") | |
st.write("Datos de los gr谩ficos (para depuraci贸n):") | |
if 'graph1' in entry: | |
st.write("Graph 1:", entry['graph1'][:100] + "...") | |
if 'graph2' in entry: | |
st.write("Graph 2:", entry['graph2'][:100] + "...") | |
if 'combined_graph' in entry: | |
st.write("Combined Graph:", entry['combined_graph'][:100] + "...") | |
########################################################## | |
with st.expander("Hist贸rico de Conversaciones con el ChatBot"): | |
if 'chat_history' in student_data: | |
for i, chat in enumerate(student_data['chat_history']): | |
st.subheader(f"Conversaci贸n {i+1} - {chat['timestamp']}") | |
for message in chat['messages']: | |
if message['role'] == 'user': | |
st.write("Usuario: " + message['content']) | |
else: | |
st.write("Asistente: " + message['content']) | |
st.write("---") | |
else: | |
st.write("No se encontraron conversaciones con el ChatBot.") | |
# A帽adir logs para depuraci贸n | |
if st.checkbox("Mostrar datos de depuraci贸n"): | |
st.write("Datos del estudiante (para depuraci贸n):") | |
st.json(student_data) | |
#####################--- Funciones de manejo de archivos --- ############################################################################# | |
def handle_file_upload(username, lang_code, nlp_models, t, analysis_type): | |
st.subheader(t['get_text']('file_upload_section', analysis_type.upper(), 'File Upload')) | |
uploaded_file = st.file_uploader( | |
t['get_text']('file_uploader', analysis_type.upper(), 'Upload a file'), | |
type=['txt', 'pdf', 'docx', 'doc', 'odt'] | |
) | |
if uploaded_file is not None: | |
file_contents = read_file_contents(uploaded_file) | |
if store_file_contents(username, uploaded_file.name, file_contents, analysis_type): | |
st.success(t['get_text']('file_upload_success', analysis_type.upper(), 'File uploaded successfully')) | |
return file_contents, uploaded_file.name | |
else: | |
st.error(t['get_text']('file_upload_error', analysis_type.upper(), 'Error uploading file')) | |
return None, None | |
def read_file_contents(uploaded_file): | |
# Implementar la l贸gica para leer diferentes tipos de archivos | |
# Por ahora, asumimos que es un archivo de texto | |
return uploaded_file.getvalue().decode('utf-8') | |
######################--- Funciones generales de an谩lisis ---######################################################## | |
def display_analysis_results(analysis, lang_code, t): | |
if analysis is None: | |
st.warning(t.get('no_analysis', "No hay an谩lisis disponible.")) | |
return | |
if not isinstance(analysis, dict): | |
st.error(f"Error: El resultado del an谩lisis no es un diccionario. Tipo actual: {type(analysis)}") | |
return | |
if 'type' not in analysis: | |
st.error("Error: El resultado del an谩lisis no contiene la clave 'type'") | |
st.write("Claves presentes en el resultado:", list(analysis.keys())) | |
return | |
if analysis['type'] == 'morphosyntactic': | |
st.subheader(t.get('morphosyntactic_title', "An谩lisis Morfosint谩ctico")) | |
display_morphosyntax_results(analysis['result'], lang_code, t) | |
elif analysis['type'] == 'semantic': | |
st.subheader(t.get('semantic_title', "An谩lisis Sem谩ntico")) | |
display_semantic_results(analysis['result'], lang_code, t) | |
elif analysis['type'] == 'discourse': | |
st.subheader(t.get('discourse_title', "An谩lisis del Discurso")) | |
display_discourse_results(analysis['result'], lang_code, t) | |
else: | |
st.warning(t.get('no_analysis', "No hay an谩lisis disponible.")) | |
# Mostrar el contenido completo del an谩lisis para depuraci贸n | |
st.write("Contenido completo del an谩lisis:", analysis) | |
def handle_user_input(user_input, lang_code, nlp_models, analysis_type, file_contents=None): | |
response = process_chat_input(user_input, lang_code, nlp_models, analysis_type, file_contents, t) | |
# Procesa la respuesta y actualiza la interfaz de usuario | |
###################################--- Funciones espec铆ficas de an谩lisis morfosint谩ctico ---################################################################ | |
def display_morphosyntax_analysis_interface(user_input, nlp_models, lang_code, t): | |
logging.info(f"Displaying morphosyntax analysis interface. Language code: {lang_code}") | |
# Inicializar el historial del chat si no existe | |
if 'morphosyntax_chat_history' not in st.session_state: | |
initial_message = t['get_text']('initial_message', 'MORPHOSYNTACTIC', | |
"Este es un chatbot para an谩lisis morfosint谩ctico. Para generar un diagrama de arco, " | |
"use el comando /analisis_morfosintactico seguido del texto entre corchetes.") | |
st.session_state.morphosyntax_chat_history = [{"role": "assistant", "content": initial_message}] | |
# Contenedor para el chat | |
chat_container = st.container() | |
# Mostrar el historial del chat | |
with chat_container: | |
for message in st.session_state.morphosyntax_chat_history: | |
with st.chat_message(message["role"]): | |
st.write(message["content"]) | |
if "visualization" in message: | |
st.components.v1.html(message["visualization"], height=450, scrolling=True) | |
# Input del usuario | |
user_input = st.chat_input(t['get_text']('chat_placeholder', 'MORPHOSYNTACTIC', | |
"Ingrese su mensaje o use /analisis_morfosintactico [texto] para analizar")) | |
if user_input: | |
# A帽adir el mensaje del usuario al historial | |
st.session_state.morphosyntax_chat_history.append({"role": "user", "content": user_input}) | |
# Procesar el input del usuario | |
if user_input.startswith('/analisis_morfosintactico'): | |
text_to_analyze = user_input.split('[', 1)[1].rsplit(']', 1)[0] | |
try: | |
result = perform_advanced_morphosyntactic_analysis(text_to_analyze, nlp_models[lang_code]) | |
# Guardar el resultado en el estado de la sesi贸n | |
st.session_state.current_analysis = { | |
'type': 'morphosyntactic', | |
'result': result | |
} | |
# A帽adir el resultado al historial del chat | |
response = t['get_text']('analysis_completed', 'MORPHOSYNTACTIC', 'An谩lisis morfosint谩ctico completado.') | |
st.session_state.morphosyntax_chat_history.append({ | |
"role": "assistant", | |
"content": response, | |
"visualization": result['arc_diagram'][0] if result['arc_diagram'] else None | |
}) | |
# Guardar resultados en la base de datos | |
if store_morphosyntax_result( | |
st.session_state.username, | |
text_to_analyze, | |
get_repeated_words_colors(nlp_models[lang_code](text_to_analyze)), | |
result['arc_diagram'], | |
result['pos_analysis'], | |
result['morphological_analysis'], | |
result['sentence_structure'] | |
): | |
st.success(t['get_text']('success_message', 'MORPHOSYNTACTIC', 'An谩lisis guardado correctamente.')) | |
else: | |
st.error(t['get_text']('error_message', 'MORPHOSYNTACTIC', 'Hubo un problema al guardar el an谩lisis.')) | |
except Exception as e: | |
error_message = t['get_text']('analysis_error', 'MORPHOSYNTACTIC', f'Ocurri贸 un error durante el an谩lisis: {str(e)}') | |
st.session_state.morphosyntax_chat_history.append({"role": "assistant", "content": error_message}) | |
logging.error(f"Error in morphosyntactic analysis: {str(e)}") | |
else: | |
# Aqu铆 puedes procesar otros tipos de inputs del usuario si es necesario | |
response = t['get_text']('command_not_recognized', 'MORPHOSYNTACTIC', | |
"Comando no reconocido. Use /analisis_morfosintactico [texto] para realizar un an谩lisis.") | |
st.session_state.morphosyntax_chat_history.append({"role": "assistant", "content": response}) | |
# Forzar la actualizaci贸n de la interfaz | |
st.experimental_rerun() | |
logging.info("Morphosyntax analysis interface displayed successfully") | |
################################################################################################# | |
def display_morphosyntax_results(result, lang_code, t): | |
if result is None: | |
st.warning(t['no_results']) # A帽ade esta traducci贸n a tu diccionario | |
return | |
# doc = result['doc'] | |
# advanced_analysis = result['advanced_analysis'] | |
advanced_analysis = result | |
# Mostrar leyenda (c贸digo existente) | |
st.markdown(f"##### {t['legend']}") | |
legend_html = "<div style='display: flex; flex-wrap: wrap;'>" | |
for pos, color in POS_COLORS.items(): | |
if pos in POS_TRANSLATIONS[lang_code]: | |
legend_html += f"<div style='margin-right: 10px;'><span style='background-color: {color}; padding: 2px 5px;'>{POS_TRANSLATIONS[lang_code][pos]}</span></div>" | |
legend_html += "</div>" | |
st.markdown(legend_html, unsafe_allow_html=True) | |
# Mostrar an谩lisis de palabras repetidas (c贸digo existente) | |
if 'repeated_words' in advanced_analysis: | |
with st.expander(t['repeated_words'], expanded=True): | |
st.markdown(advanced_analysis['repeated_words'], unsafe_allow_html=True) | |
# Mostrar estructura de oraciones | |
if 'sentence_structure' in advanced_analysis: | |
with st.expander(t['sentence_structure'], expanded=True): | |
for i, sent_analysis in enumerate(advanced_analysis['sentence_structure']): | |
sentence_str = ( | |
f"**{t['sentence']} {i+1}** " | |
f"{t['root']}: {sent_analysis['root']} ({sent_analysis['root_pos']}) -- " | |
f"{t['subjects']}: {', '.join(sent_analysis['subjects'])} -- " | |
f"{t['objects']}: {', '.join(sent_analysis['objects'])} -- " | |
f"{t['verbs']}: {', '.join(sent_analysis['verbs'])}" | |
) | |
st.markdown(sentence_str) | |
else: | |
st.warning("No se encontr贸 informaci贸n sobre la estructura de las oraciones.") | |
# Mostrar an谩lisis de categor铆as gramaticales # Mostrar an谩lisis morfol贸gico | |
col1, col2 = st.columns(2) | |
with col1: | |
with st.expander(t['pos_analysis'], expanded=True): | |
pos_df = pd.DataFrame(advanced_analysis['pos_analysis']) | |
# Traducir las etiquetas POS a sus nombres en el idioma seleccionado | |
pos_df['pos'] = pos_df['pos'].map(lambda x: POS_TRANSLATIONS[lang_code].get(x, x)) | |
# Renombrar las columnas para mayor claridad | |
pos_df = pos_df.rename(columns={ | |
'pos': t['grammatical_category'], | |
'count': t['count'], | |
'percentage': t['percentage'], | |
'examples': t['examples'] | |
}) | |
# Mostrar el dataframe | |
st.dataframe(pos_df) | |
with col2: | |
with st.expander(t['morphological_analysis'], expanded=True): | |
morph_df = pd.DataFrame(advanced_analysis['morphological_analysis']) | |
# Definir el mapeo de columnas | |
column_mapping = { | |
'text': t['word'], | |
'lemma': t['lemma'], | |
'pos': t['grammatical_category'], | |
'dep': t['dependency'], | |
'morph': t['morphology'] | |
} | |
# Renombrar las columnas existentes | |
morph_df = morph_df.rename(columns={col: new_name for col, new_name in column_mapping.items() if col in morph_df.columns}) | |
# Traducir las categor铆as gramaticales | |
morph_df[t['grammatical_category']] = morph_df[t['grammatical_category']].map(lambda x: POS_TRANSLATIONS[lang_code].get(x, x)) | |
# Traducir las dependencias | |
dep_translations = { | |
'es': { | |
'ROOT': 'RA脥Z', 'nsubj': 'sujeto nominal', 'obj': 'objeto', 'iobj': 'objeto indirecto', | |
'csubj': 'sujeto clausal', 'ccomp': 'complemento clausal', 'xcomp': 'complemento clausal abierto', | |
'obl': 'oblicuo', 'vocative': 'vocativo', 'expl': 'expletivo', 'dislocated': 'dislocado', | |
'advcl': 'cl谩usula adverbial', 'advmod': 'modificador adverbial', 'discourse': 'discurso', | |
'aux': 'auxiliar', 'cop': 'c贸pula', 'mark': 'marcador', 'nmod': 'modificador nominal', | |
'appos': 'aposici贸n', 'nummod': 'modificador numeral', 'acl': 'cl谩usula adjetiva', | |
'amod': 'modificador adjetival', 'det': 'determinante', 'clf': 'clasificador', | |
'case': 'caso', 'conj': 'conjunci贸n', 'cc': 'coordinante', 'fixed': 'fijo', | |
'flat': 'plano', 'compound': 'compuesto', 'list': 'lista', 'parataxis': 'parataxis', | |
'orphan': 'hu茅rfano', 'goeswith': 'va con', 'reparandum': 'reparaci贸n', 'punct': 'puntuaci贸n' | |
}, | |
'en': { | |
'ROOT': 'ROOT', 'nsubj': 'nominal subject', 'obj': 'object', | |
'iobj': 'indirect object', 'csubj': 'clausal subject', 'ccomp': 'clausal complement', 'xcomp': 'open clausal complement', | |
'obl': 'oblique', 'vocative': 'vocative', 'expl': 'expletive', 'dislocated': 'dislocated', 'advcl': 'adverbial clause modifier', | |
'advmod': 'adverbial modifier', 'discourse': 'discourse element', 'aux': 'auxiliary', 'cop': 'copula', 'mark': 'marker', | |
'nmod': 'nominal modifier', 'appos': 'appositional modifier', 'nummod': 'numeric modifier', 'acl': 'clausal modifier of noun', | |
'amod': 'adjectival modifier', 'det': 'determiner', 'clf': 'classifier', 'case': 'case marking', | |
'conj': 'conjunct', 'cc': 'coordinating conjunction', 'fixed': 'fixed multiword expression', | |
'flat': 'flat multiword expression', 'compound': 'compound', 'list': 'list', 'parataxis': 'parataxis', 'orphan': 'orphan', | |
'goeswith': 'goes with', 'reparandum': 'reparandum', 'punct': 'punctuation' | |
}, | |
'fr': { | |
'ROOT': 'RACINE', 'nsubj': 'sujet nominal', 'obj': 'objet', 'iobj': 'objet indirect', | |
'csubj': 'sujet phrastique', 'ccomp': 'compl茅ment phrastique', 'xcomp': 'compl茅ment phrastique ouvert', 'obl': 'oblique', | |
'vocative': 'vocatif', 'expl': 'expl茅tif', 'dislocated': 'disloqu茅', 'advcl': 'clause adverbiale', 'advmod': 'modifieur adverbial', | |
'discourse': '茅l茅ment de discours', 'aux': 'auxiliaire', 'cop': 'copule', 'mark': 'marqueur', 'nmod': 'modifieur nominal', | |
'appos': 'apposition', 'nummod': 'modifieur num茅ral', 'acl': 'clause relative', 'amod': 'modifieur adjectival', 'det': 'd茅terminant', | |
'clf': 'classificateur', 'case': 'marqueur de cas', 'conj': 'conjonction', 'cc': 'coordination', 'fixed': 'expression fig茅e', | |
'flat': 'construction plate', 'compound': 'compos茅', 'list': 'liste', 'parataxis': 'parataxe', 'orphan': 'orphelin', | |
'goeswith': 'va avec', 'reparandum': 'r茅paration', 'punct': 'ponctuation' | |
} | |
} | |
morph_df[t['dependency']] = morph_df[t['dependency']].map(lambda x: dep_translations[lang_code].get(x, x)) | |
# Traducir la morfolog铆a | |
def translate_morph(morph_string, lang_code): | |
morph_translations = { | |
'es': { | |
'Gender': 'G茅nero', 'Number': 'N煤mero', 'Case': 'Caso', 'Definite': 'Definido', | |
'PronType': 'Tipo de Pronombre', 'Person': 'Persona', 'Mood': 'Modo', | |
'Tense': 'Tiempo', 'VerbForm': 'Forma Verbal', 'Voice': 'Voz', | |
'Fem': 'Femenino', 'Masc': 'Masculino', 'Sing': 'Singular', 'Plur': 'Plural', | |
'Ind': 'Indicativo', 'Sub': 'Subjuntivo', 'Imp': 'Imperativo', 'Inf': 'Infinitivo', | |
'Part': 'Participio', 'Ger': 'Gerundio', 'Pres': 'Presente', 'Past': 'Pasado', | |
'Fut': 'Futuro', 'Perf': 'Perfecto', 'Imp': 'Imperfecto' | |
}, | |
'en': { | |
'Gender': 'Gender', 'Number': 'Number', 'Case': 'Case', 'Definite': 'Definite', 'PronType': 'Pronoun Type', 'Person': 'Person', | |
'Mood': 'Mood', 'Tense': 'Tense', 'VerbForm': 'Verb Form', 'Voice': 'Voice', | |
'Fem': 'Feminine', 'Masc': 'Masculine', 'Sing': 'Singular', 'Plur': 'Plural', 'Ind': 'Indicative', | |
'Sub': 'Subjunctive', 'Imp': 'Imperative', 'Inf': 'Infinitive', 'Part': 'Participle', | |
'Ger': 'Gerund', 'Pres': 'Present', 'Past': 'Past', 'Fut': 'Future', 'Perf': 'Perfect', 'Imp': 'Imperfect' | |
}, | |
'fr': { | |
'Gender': 'Genre', 'Number': 'Nombre', 'Case': 'Cas', 'Definite': 'D茅fini', 'PronType': 'Type de Pronom', | |
'Person': 'Personne', 'Mood': 'Mode', 'Tense': 'Temps', 'VerbForm': 'Forme Verbale', 'Voice': 'Voix', | |
'Fem': 'F茅minin', 'Masc': 'Masculin', 'Sing': 'Singulier', 'Plur': 'Pluriel', 'Ind': 'Indicatif', | |
'Sub': 'Subjonctif', 'Imp': 'Imp茅ratif', 'Inf': 'Infinitif', 'Part': 'Participe', | |
'Ger': 'G茅rondif', 'Pres': 'Pr茅sent', 'Past': 'Pass茅', 'Fut': 'Futur', 'Perf': 'Parfait', 'Imp': 'Imparfait' | |
} | |
} | |
for key, value in morph_translations[lang_code].items(): | |
morph_string = morph_string.replace(key, value) | |
return morph_string | |
morph_df[t['morphology']] = morph_df[t['morphology']].apply(lambda x: translate_morph(x, lang_code)) | |
# Seleccionar y ordenar las columnas a mostrar | |
columns_to_display = [t['word'], t['lemma'], t['grammatical_category'], t['dependency'], t['morphology']] | |
columns_to_display = [col for col in columns_to_display if col in morph_df.columns] | |
# Mostrar el DataFrame | |
st.dataframe(morph_df[columns_to_display]) | |
# Mostrar diagramas de arco (c贸digo existente) | |
#with st.expander(t['arc_diagram'], expanded=True): | |
# sentences = list(doc.sents) | |
# arc_diagrams = [] | |
# for i, sent in enumerate(sentences): | |
# st.subheader(f"{t['sentence']} {i+1}") | |
# html = displacy.render(sent, style="dep", options={"distance": 100}) | |
# html = html.replace('height="375"', 'height="200"') | |
# html = re.sub(r'<svg[^>]*>', lambda m: m.group(0).replace('height="450"', 'height="300"'), html) | |
# html = re.sub(r'<g [^>]*transform="translate\((\d+),(\d+)\)"', lambda m: f'<g transform="translate({m.group(1)},50)"', html) | |
# st.write(html, unsafe_allow_html=True) | |
# arc_diagrams.append(html) | |
# Mostrar diagramas de arco | |
with st.expander(t['arc_diagram'], expanded=True): | |
for i, arc_diagram in enumerate(advanced_analysis['arc_diagram']): | |
st.subheader(f"{t['sentence']} {i+1}") | |
st.write(arc_diagram, unsafe_allow_html=True) | |
#####################--- Funciones espec铆ficas de an谩lisis sem谩ntico --- ############## | |
#display_chatbot_interface(lang_code, nlp_models, t, analysis_type='semantic') | |
def display_semantic_analysis_interface(lang_code, nlp_models, t): | |
print("Iniciando display_semantic_analysis_interface") | |
st.write("Debug: Iniciando interfaz de an谩lisis sem谩ntico") | |
st.header(t['get_text']('semantic_analysis_title', 'SEMANTIC', 'Semantic Analysis')) | |
# Secci贸n para gestionar archivos | |
with st.expander("Gesti贸n de Archivos", expanded=True): | |
col1, col2 = st.columns(2) | |
with col1: | |
# Cargar nuevo archivo | |
uploaded_file = st.file_uploader(t['file_uploader'], type=['txt', 'pdf', 'docx', 'doc', 'odt']) | |
if uploaded_file: | |
file_contents = read_file_contents(uploaded_file) | |
if store_file_contents(st.session_state.username, uploaded_file.name, file_contents, "semantic"): | |
st.success(t['file_upload_success']) | |
st.session_state.file_contents = file_contents | |
st.session_state.file_name = uploaded_file.name | |
else: | |
st.error(t['file_upload_error']) | |
with col2: | |
# Lista desplegable de archivos guardados | |
saved_files = get_user_files(st.session_state.username, "semantic") | |
if saved_files: | |
selected_file = st.selectbox( | |
t['select_saved_file'], | |
options=[file['file_name'] for file in saved_files], | |
format_func=lambda x: f"{x} ({next(file['timestamp'] for file in saved_files if file['file_name'] == x)})" | |
) | |
col2_1, col2_2 = st.columns(2) | |
with col2_1: | |
if st.button(t['load_selected_file']): | |
file_contents = retrieve_file_contents(st.session_state.username, selected_file, "semantic") | |
if file_contents: | |
st.session_state.file_contents = file_contents | |
st.session_state.file_name = selected_file | |
st.success(t['file_loaded_success']) | |
else: | |
st.error(t['file_load_error']) | |
with col2_2: | |
if st.button(t['delete_selected_file']): | |
if 'file_name' in st.session_state and delete_file(st.session_state.username, st.session_state.file_name, "semantic"): | |
st.success(t['file_deleted_success']) | |
st.session_state.pop('file_contents', None) | |
st.session_state.pop('file_name', None) | |
else: | |
st.error(t['file_delete_error']) | |
# Bot贸n para analizar documento | |
if st.button(t['analyze_document']): | |
if 'file_contents' in st.session_state: | |
result = perform_semantic_analysis(st.session_state.file_contents, nlp_models[lang_code], lang_code) | |
st.session_state.semantic_result = result | |
if store_semantic_result(st.session_state.username, st.session_state.file_contents, result): | |
st.success(t['analysis_saved_success']) | |
else: | |
st.error(t['analysis_save_error']) | |
else: | |
st.warning(t['no_file_selected']) | |
# Interfaz principal de chat y grafo | |
chat_col, graph_col = st.columns([1, 1]) | |
with chat_col: | |
st.subheader(t['chat_title']) | |
# Mostrar la interfaz de chat | |
display_semantic_chatbot_interface(nlp_models, lang_code, st.session_state.get('file_contents'), t) | |
with graph_col: | |
st.subheader(t['graph_title']) | |
if 'semantic_result' in st.session_state: | |
display_semantic_results(st.session_state.semantic_result, lang_code, t) | |
else: | |
st.info(t['no_analysis']) | |
# Mostrar el chatbot general para an谩lisis sem谩ntico | |
st.subheader("Chatbot de An谩lisis Sem谩ntico") | |
display_chatbot_interface(lang_code, nlp_models, t, analysis_type='semantic') | |
############################ | |
def display_semantic_chatbot_interface(nlp_models, lang_code, file_contents, t): | |
# Generar una clave 煤nica para esta sesi贸n si a煤n no existe | |
if 'semantic_chat_input_key' not in st.session_state: | |
st.session_state.semantic_chat_input_key = f"semantic_chat_input_{id(st.session_state)}" | |
# Inicializar el historial del chat si no existe | |
if 'semantic_chat_history' not in st.session_state: | |
st.session_state.semantic_chat_history = [{"role": "assistant", "content": t['initial_message']}] | |
# Crear un contenedor con altura fija para el chat | |
chat_container = st.container() | |
# Mostrar el historial del chat en el contenedor | |
with chat_container: | |
# Crear un 谩rea de desplazamiento para el historial del chat | |
with st.empty(): | |
chat_history = "".join([f"{'You' if msg['role'] == 'user' else 'Assistant'}: {msg['content']}\n\n" for msg in st.session_state.semantic_chat_history]) | |
st.text_area("Chat History", value=chat_history, height=300, key="chat_history", disabled=True) | |
# Usa la clave 煤nica para el chat_input | |
user_input = st.chat_input(t['chat_placeholder'], key=st.session_state.semantic_chat_input_key) | |
if user_input: | |
st.session_state.semantic_chat_history.append({"role": "user", "content": user_input}) | |
try: | |
response, graph = handle_semantic_commands(user_input, lang_code, file_contents, nlp_models) | |
st.session_state.semantic_chat_history.append({"role": "assistant", "content": response}) | |
if graph is not None: | |
st.session_state.semantic_graph = graph | |
except Exception as e: | |
error_message = f"Error al procesar la solicitud: {str(e)}" | |
st.session_state.semantic_chat_history.append({"role": "assistant", "content": error_message}) | |
st.error(error_message) | |
# Bot贸n para limpiar el historial del chat | |
if st.button(t['clear_chat'], key=f"clear_chat_{st.session_state.semantic_chat_input_key}"): | |
st.session_state.semantic_chat_history = [{"role": "assistant", "content": t['initial_message']}] | |
############################ | |
def display_semantic_results(result, lang_code, t): | |
if result is None: | |
st.warning(t.get('no_results', "No hay resultados disponibles.")) | |
return | |
# Mostrar conceptos clave | |
st.subheader(t.get('key_concepts', "Conceptos Clave")) | |
if 'key_concepts' in result: | |
for concept, frequency in result['key_concepts']: | |
st.write(f"{concept}: {frequency}") | |
else: | |
st.warning(t.get('no_key_concepts', "No se encontraron conceptos clave.")) | |
# Mostrar el gr谩fico de relaciones conceptuales | |
st.subheader(t.get('conceptual_relations', "Relaciones Conceptuales")) | |
if 'relations_graph' in result: | |
st.pyplot(result['relations_graph']) | |
else: | |
st.warning(t.get('no_graph', "No se pudo generar el gr谩fico de relaciones.")) | |
# Mostrar el contenido completo del resultado para depuraci贸n | |
st.write("Contenido completo del resultado:", result) | |
############################ | |
##################################### --- Funciones espec铆ficas de an谩lisis del discurso --- ############################################################## | |
def display_discourse_analysis_interface(nlp_models, lang_code, t): | |
st.header(t['get_text']('discourse_analysis_title', 'DISCOURSE', 'Discourse Analysis')) | |
# Mostrar la interfaz de chat | |
display_chatbot_interface(lang_code, nlp_models, t, analysis_type='discourse') | |
# Subir archivos | |
col1, col2 = st.columns(2) | |
with col1: | |
uploaded_file1 = st.file_uploader(t['get_text']('file_uploader1', 'DISCOURSE', 'Upload first file'), type=['txt']) | |
with col2: | |
uploaded_file2 = st.file_uploader(t['get_text']('file_uploader2', 'DISCOURSE', 'Upload second file'), type=['txt']) | |
if uploaded_file1 is not None and uploaded_file2 is not None: | |
if st.button(t['get_text']('analyze_button', 'DISCOURSE', 'Analyze')): | |
text_content1 = uploaded_file1.getvalue().decode('utf-8') | |
text_content2 = uploaded_file2.getvalue().decode('utf-8') | |
# Realizar el an谩lisis | |
analysis_result = perform_discourse_analysis(text_content1, text_content2, nlp_models[lang_code], lang_code) | |
# Guardar el resultado en el estado de la sesi贸n | |
st.session_state.discourse_result = analysis_result | |
# Mostrar los resultados del an谩lisis | |
display_discourse_results(analysis_result, lang_code, t) | |
# Guardar el resultado del an谩lisis | |
if store_discourse_analysis_result(st.session_state.username, text_content1, text_content2, analysis_result): | |
st.success(t['get_text']('success_message', 'DISCOURSE', 'Analysis result saved successfully')) | |
else: | |
st.error(t['get_text']('error_message', 'DISCOURSE', 'Failed to save analysis result')) | |
elif 'discourse_result' in st.session_state and st.session_state.discourse_result is not None: | |
# Si hay un resultado guardado, mostrarlo | |
display_discourse_results(st.session_state.discourse_result, lang_code, t) | |
else: | |
st.info(t['get_text']('DISCOURSE_initial_message', 'DISCOURSE', 'Upload two files and click "Analyze" to start the discourse analysis.')) | |
################################################# | |
def display_discourse_results(result, lang_code, t): | |
if result is None: | |
st.warning(t.get('no_results', "No hay resultados disponibles.")) | |
return | |
col1, col2 = st.columns(2) | |
with col1: | |
with st.expander(t.get('file_uploader1', "Documento 1"), expanded=True): | |
st.subheader(t.get('key_concepts', "Conceptos Clave")) | |
if 'key_concepts1' in result: | |
df1 = pd.DataFrame(result['key_concepts1'], columns=['Concepto', 'Frecuencia']) | |
df1['Frecuencia'] = df1['Frecuencia'].round(2) | |
st.table(df1) | |
else: | |
st.warning(t.get('concepts_not_available', "Los conceptos clave no est谩n disponibles.")) | |
if 'graph1' in result: | |
st.pyplot(result['graph1']) | |
else: | |
st.warning(t.get('graph_not_available', "El gr谩fico no est谩 disponible.")) | |
with col2: | |
with st.expander(t.get('file_uploader2', "Documento 2"), expanded=True): | |
st.subheader(t.get('key_concepts', "Conceptos Clave")) | |
if 'key_concepts2' in result: | |
df2 = pd.DataFrame(result['key_concepts2'], columns=['Concepto', 'Frecuencia']) | |
df2['Frecuencia'] = df2['Frecuencia'].round(2) | |
st.table(df2) | |
else: | |
st.warning(t.get('concepts_not_available', "Los conceptos clave no est谩n disponibles.")) | |
if 'graph2' in result: | |
st.pyplot(result['graph2']) | |
else: | |
st.warning(t.get('graph_not_available', "El gr谩fico no est谩 disponible.")) | |
# Relaci贸n de conceptos entre ambos documentos (Diagrama de Sankey) | |
st.subheader(t.get('comparison', "Relaci贸n de conceptos entre ambos documentos")) | |
if 'key_concepts1' in result and 'key_concepts2' in result: | |
df1 = pd.DataFrame(result['key_concepts1'], columns=['Concepto', 'Frecuencia']) | |
df2 = pd.DataFrame(result['key_concepts2'], columns=['Concepto', 'Frecuencia']) | |
# Crear una lista de todos los conceptos 煤nicos | |
all_concepts = list(set(df1['Concepto'].tolist() + df2['Concepto'].tolist())) | |
# Crear un diccionario de colores para cada concepto | |
color_scale = [f'rgb({random.randint(50,255)},{random.randint(50,255)},{random.randint(50,255)})' for _ in range(len(all_concepts))] | |
color_map = dict(zip(all_concepts, color_scale)) | |
# Crear el diagrama de Sankey | |
source = [0] * len(df1) + list(range(2, 2 + len(df1))) | |
target = list(range(2, 2 + len(df1))) + [1] * len(df2) | |
value = list(df1['Frecuencia']) + list(df2['Frecuencia']) | |
node_colors = ['blue', 'red'] + [color_map[concept] for concept in df1['Concepto']] + [color_map[concept] for concept in df2['Concepto']] | |
link_colors = [color_map[concept] for concept in df1['Concepto']] + [color_map[concept] for concept in df2['Concepto']] | |
fig = go.Figure(data=[go.Sankey( | |
node = dict( | |
pad = 15, | |
thickness = 20, | |
line = dict(color = "black", width = 0.5), | |
label = [t.get('file_uploader1', "Documento 1"), t.get('file_uploader2', "Documento 2")] + list(df1['Concepto']) + list(df2['Concepto']), | |
color = node_colors | |
), | |
link = dict( | |
source = source, | |
target = target, | |
value = value, | |
color = link_colors | |
))]) | |
fig.update_layout(title_text="Relaci贸n de conceptos entre documentos", font_size=10) | |
st.plotly_chart(fig, use_container_width=True) | |
else: | |
st.warning(t.get('comparison_not_available', "La comparaci贸n no est谩 disponible.")) | |
# Aqu铆 puedes agregar el c贸digo para mostrar los gr谩ficos si es necesario | |
################################################################################################## | |
#def display_saved_discourse_analysis(analysis_data): | |
# img_bytes = base64.b64decode(analysis_data['combined_graph']) | |
# img = plt.imread(io.BytesIO(img_bytes), format='png') | |
# st.image(img, use_column_width=True) | |
# st.write("Texto del documento patr贸n:") | |
# st.write(analysis_data['text1']) | |
# st.write("Texto del documento comparado:") | |
# st.write(analysis_data['text2']) | |
#################################### --- Funci贸n general de interfaz de chatbot --- ############################################################### | |
def display_chatbot_interface(lang_code, nlp_models, t, analysis_type='morphosyntactic'): | |
# Verificar que todos los argumentos necesarios est茅n presentes | |
if not all([lang_code, nlp_models, t]): | |
st.error("Missing required arguments in display_chatbot_interface") | |
return | |
valid_types = ['morphosyntactic', 'semantic', 'discourse'] | |
if analysis_type not in valid_types: | |
raise ValueError(f"Invalid analysis_type. Must be one of {valid_types}") | |
logger.debug(f"Displaying chatbot interface for {analysis_type} analysis") | |
# Obtener el mensaje inicial del diccionario de traducciones | |
initial_message = t['get_text'](f'initial_message', analysis_type.upper(), "Mensaje inicial no encontrado") | |
chat_key = f'{analysis_type}_messages' | |
if chat_key not in st.session_state or not st.session_state[chat_key]: | |
st.session_state[chat_key] = [{"role": "assistant", "content": initial_message, "visualizations": []}] | |
elif st.session_state[chat_key][0]['content'] != initial_message: | |
st.session_state[chat_key][0] = {"role": "assistant", "content": initial_message, "visualizations": []} | |
# Contenedor para el chat | |
chat_container = st.container() | |
# Mostrar el historial del chat | |
with chat_container: | |
for message in st.session_state[chat_key]: | |
with st.chat_message(message["role"]): | |
st.write(message["content"]) | |
for i, visualization in enumerate(message.get("visualizations", [])): | |
if visualization: | |
if analysis_type == 'morphosyntactic': | |
st.subheader(f"{t['get_text']('sentence', 'COMMON', 'Oraci贸n')} {i+1}") | |
st.components.v1.html(visualization, height=450, scrolling=True) | |
elif analysis_type in ['semantic', 'discourse']: | |
st.pyplot(visualization) | |
# Input del usuario | |
chat_input_key = f"chat_input_{analysis_type}_{lang_code}" | |
user_input = st.chat_input( | |
t['get_text']('input_placeholder', analysis_type.upper(), 'Ingrese su mensaje aqu铆...'), | |
key=chat_input_key | |
) | |
if user_input: | |
st.session_state[chat_key].append({"role": "user", "content": user_input, "visualizations": []}) | |
try: | |
# Procesar la entrada del usuario | |
response, visualizations = process_chat_input(user_input, lang_code, nlp_models, analysis_type, t) | |
st.session_state[chat_key].append({"role": "assistant", "content": response, "visualizations": visualizations}) | |
st.experimental_rerun() | |
except Exception as e: | |
error_message = t['get_text']('error_message', 'COMMON', f"Lo siento, ocurri贸 un error: {str(e)}") | |
st.error(error_message) | |
st.session_state[chat_key].append({"role": "assistant", "content": error_message, "visualizations": []}) | |
# L贸gica espec铆fica para cada tipo de an谩lisis | |
uploaded_file = None # Inicializar uploaded_file a None | |
if analysis_type in ['semantic', 'discourse']: | |
file_key = f"{analysis_type}_file_uploader_{lang_code}" | |
if analysis_type == 'discourse': | |
# Para el an谩lisis del discurso, necesitamos dos archivos | |
uploaded_file1 = st.file_uploader( | |
t['get_text']('file_uploader1', 'DISCOURSE', 'Upload first file'), | |
type=['txt', 'pdf', 'docx', 'doc', 'odt'], | |
key=f"{file_key}_1" | |
) | |
uploaded_file2 = st.file_uploader( | |
t['get_text']('file_uploader2', 'DISCOURSE', 'Upload second file'), | |
type=['txt', 'pdf', 'docx', 'doc', 'odt'], | |
key=f"{file_key}_2" | |
) | |
uploaded_file = (uploaded_file1, uploaded_file2) | |
else: | |
uploaded_file = st.file_uploader( | |
t['get_text']('file_uploader', analysis_type.upper(), 'Upload a file'), | |
type=['txt', 'pdf', 'docx', 'doc', 'odt'], | |
key=file_key | |
) | |
if uploaded_file: | |
if analysis_type == 'discourse': | |
if uploaded_file[0] and uploaded_file[1]: | |
file_contents1 = read_file_contents(uploaded_file[0]) | |
file_contents2 = read_file_contents(uploaded_file[1]) | |
if st.button(t['get_text']('analyze_button', 'DISCOURSE', 'Analyze')): | |
result = perform_discourse_analysis(file_contents1, file_contents2, nlp_models[lang_code], lang_code) | |
result = {'type': 'discourse', 'result': result} | |
st.session_state['discourse_result'] = result | |
display_analysis_results(result, lang_code, t) | |
else: | |
file_contents = read_file_contents(uploaded_file) | |
if st.button(t['get_text']('analyze_button', analysis_type.upper(), 'Analyze')): | |
if analysis_type == 'semantic': | |
result = perform_semantic_analysis(file_contents, nlp_models[lang_code], lang_code) | |
result = {'type': 'semantic', 'result': result} | |
st.session_state[f'{analysis_type}_result'] = result | |
display_analysis_results(result, lang_code, t) | |
def process_chat_input(user_input, lang_code, nlp_models, analysis_type, t, file_contents=None): | |
chatbot_key = f'{analysis_type}_chatbot' | |
if chatbot_key not in st.session_state: | |
st.session_state[chatbot_key] = initialize_chatbot(analysis_type) | |
chatbot = st.session_state[chatbot_key] | |
if analysis_type == 'morphosyntactic': | |
response = chatbot.process_input(user_input, lang_code, nlp_models, t) | |
visualizations = [] | |
if user_input.startswith('/analisis_morfosintactico') or user_input.startswith('/morphosyntactic_analysis') or user_input.startswith('/analyse_morphosyntaxique'): | |
result = perform_advanced_morphosyntactic_analysis(user_input.split(' ', 1)[1].strip('[]'), nlp_models[lang_code]) | |
visualizations = result.get('arc_diagram', []) | |
return response, visualizations | |
elif analysis_type == 'semantic': | |
response, graph = chatbot.process_input(user_input, lang_code, nlp_models[lang_code], file_contents, t) | |
return response, [graph] if graph else [] | |
elif analysis_type == 'discourse': | |
response = chatbot.process_input(user_input, lang_code, nlp_models, t) | |
visualizations = [] | |
if user_input.startswith('/analisis_discurso') or user_input.startswith('/discourse_analysis') or user_input.startswith('/analyse_discours'): | |
texts = user_input.split(' ', 1)[1].split('|') | |
if len(texts) == 2: | |
result = perform_discourse_analysis(texts[0].strip(), texts[1].strip(), nlp_models[lang_code], lang_code) | |
visualizations = [result.get('graph1'), result.get('graph2'), result.get('combined_graph')] | |
return response, visualizations | |
else: | |
raise ValueError(f"Invalid analysis_type: {analysis_type}") | |
###################################################### | |
if __name__ == "__main__": | |
main() |