Spaces:
Running
Running
import streamlit as st | |
from streamlit_float import * | |
import logging | |
import sys | |
import io | |
from io import BytesIO | |
from datetime import datetime | |
import re | |
import base64 | |
import matplotlib.pyplot as plt | |
import plotly.graph_objects as go | |
import pandas as pd | |
import numpy as np | |
from .flexible_analysis_handler import FlexibleAnalysisHandler | |
from .semantic_float_reset import semantic_float_init, float_graph, toggle_float_visibility, update_float_content | |
from .semantic_process import process_semantic_analysis | |
from ..chatbot.chatbot import initialize_chatbot, process_semantic_chat_input | |
from ..database.database_oldFromV2 import manage_file_contents, delete_file, get_user_files | |
from ..utils.widget_utils import generate_unique_key | |
semantic_float_init() | |
logging.basicConfig(level=logging.DEBUG) | |
logger = logging.getLogger(__name__) | |
def get_translation(t, key, default): | |
return t.get(key, default) | |
## | |
def fig_to_base64(fig): | |
buf = io.BytesIO() | |
fig.savefig(buf, format='png') | |
buf.seek(0) | |
img_str = base64.b64encode(buf.getvalue()).decode() | |
return f'<img src="data:image/png;base64,{img_str}" />' | |
## | |
def display_semantic_interface(lang_code, nlp_models, t): | |
#st.set_page_config(layout="wide") | |
if 'semantic_chatbot' not in st.session_state: | |
st.session_state.semantic_chatbot = initialize_chatbot('semantic') | |
if 'semantic_chat_history' not in st.session_state: | |
st.session_state.semantic_chat_history = [] | |
if 'show_graph' not in st.session_state: | |
st.session_state.show_graph = False | |
if 'graph_id' not in st.session_state: | |
st.session_state.graph_id = None | |
if 'semantic_chatbot' not in st.session_state: | |
st.session_state.semantic_chatbot = initialize_chatbot('semantic') | |
if 'semantic_chat_history' not in st.session_state: | |
st.session_state.semantic_chat_history = [] | |
if 'show_graph' not in st.session_state: | |
st.session_state.show_graph = False | |
st.markdown(""" | |
<style> | |
.chat-message-container { | |
height: calc(100vh - 200px); | |
overflow-y: auto; | |
display: flex; | |
flex-direction: column-reverse; | |
} | |
.chat-input-container { | |
position: fixed; | |
bottom: 0; | |
left: 0; | |
right: 0; | |
padding: 1rem; | |
background-color: white; | |
z-index: 1000; | |
} | |
.semantic-initial-message { | |
background-color: #f0f2f6; | |
border-left: 5px solid #4CAF50; | |
padding: 10px; | |
border-radius: 5px; | |
font-size: 16px; | |
margin-bottom: 20px; | |
} | |
</style> | |
""", unsafe_allow_html=True) | |
st.markdown(f""" | |
<div class="semantic-initial-message"> | |
{t['semantic_initial_message']} | |
</div> | |
""", unsafe_allow_html=True) | |
col1, col2 = st.columns([2, 1]) | |
with col1: | |
st.subheader("Chat with AI") | |
chat_container = st.container() | |
with chat_container: | |
st.markdown('<div class="chat-message-container">', unsafe_allow_html=True) | |
for message in reversed(st.session_state.semantic_chat_history): | |
with st.chat_message(message["role"]): | |
st.markdown(message["content"]) | |
st.markdown('</div>', unsafe_allow_html=True) | |
st.markdown('<div class="chat-input-container">', unsafe_allow_html=True) | |
user_input = st.text_input("Type your message here...", key=generate_unique_key('semantic', 'chat_input')) | |
send_button = st.button("Send", key=generate_unique_key('semantic', 'send_message')) | |
clear_button = st.button("Clear Chat", key=generate_unique_key('semantic', 'clear_chat')) | |
st.markdown('</div>', unsafe_allow_html=True) | |
if send_button and user_input: | |
st.session_state.semantic_chat_history.append({"role": "user", "content": user_input}) | |
if user_input.startswith('/analyze_current'): | |
response = process_semantic_chat_input(user_input, lang_code, nlp_models[lang_code], st.session_state.get('file_contents', '')) | |
else: | |
response = st.session_state.semantic_chatbot.generate_response(user_input, lang_code, context=st.session_state.get('file_contents', '')) | |
st.session_state.semantic_chat_history.append({"role": "assistant", "content": response}) | |
st.rerun() | |
if clear_button: | |
st.session_state.semantic_chat_history = [] | |
st.rerun() | |
with col2: | |
st.subheader("Document Analysis") | |
user_files = get_user_files(st.session_state.username, 'semantic') | |
file_options = [get_translation(t, 'select_saved_file', 'Select a saved file')] + [file['file_name'] for file in user_files] | |
selected_file = st.selectbox("Select a file to analyze", options=file_options, key=generate_unique_key('semantic', 'file_selector')) | |
if st.button("Analyze Document", key=generate_unique_key('semantic', 'analyze_document')): | |
if selected_file and selected_file != get_translation(t, 'select_saved_file', 'Select a saved file'): | |
file_contents = manage_file_contents(st.session_state.username, selected_file, 'semantic') | |
if file_contents: | |
st.session_state.file_contents = file_contents | |
with st.spinner("Analyzing..."): | |
try: | |
nlp_model = nlp_models[lang_code] | |
logger.debug("Calling process_semantic_analysis") | |
analysis_result = process_semantic_analysis(file_contents, nlp_model, lang_code) | |
# Crear una instancia de FlexibleAnalysisHandler con los resultados del análisis | |
handler = FlexibleAnalysisHandler(analysis_result) | |
logger.debug(f"Type of analysis_result: {type(analysis_result)}") | |
logger.debug(f"Keys in analysis_result: {analysis_result.keys() if isinstance(analysis_result, dict) else 'Not a dict'}") | |
st.session_state.concept_graph = handler.get_concept_graph() | |
st.session_state.entity_graph = handler.get_entity_graph() | |
st.session_state.key_concepts = handler.get_key_concepts() | |
st.session_state.show_graph = True | |
st.success("Analysis completed successfully") | |
except Exception as e: | |
logger.error(f"Error during analysis: {str(e)}") | |
st.error(f"Error during analysis: {str(e)}") | |
else: | |
st.error("Error loading file contents") | |
else: | |
st.error("Please select a file to analyze") | |
st.subheader("File Management") | |
uploaded_file = st.file_uploader("Choose a file to upload", type=['txt', 'pdf', 'docx', 'doc', 'odt'], key=generate_unique_key('semantic', 'file_uploader')) | |
if uploaded_file is not None: | |
file_contents = uploaded_file.getvalue().decode('utf-8') | |
if manage_file_contents(st.session_state.username, uploaded_file.name, file_contents): | |
st.success(f"File {uploaded_file.name} uploaded and saved successfully") | |
else: | |
st.error("Error uploading file") | |
st.markdown("---") | |
st.subheader("Manage Uploaded Files") | |
user_files = get_user_files(st.session_state.username, 'semantic') | |
if user_files: | |
for file in user_files: | |
col1, col2 = st.columns([3, 1]) | |
with col1: | |
st.write(file['file_name']) | |
with col2: | |
if st.button("Delete", key=f"delete_{file['file_name']}", help=f"Delete {file['file_name']}"): | |
if delete_file(st.session_state.username, file['file_name'], 'semantic'): | |
st.success(f"File {file['file_name']} deleted successfully") | |
st.rerun() | |
else: | |
st.error(f"Error deleting file {file['file_name']}") | |
else: | |
st.info("No files uploaded yet.") | |
######################################################################################################################### | |
# Floating graph visualization | |
if st.session_state.show_graph: | |
if st.session_state.graph_id is None: | |
st.session_state.graph_id = float_graph( | |
content="<div id='semantic-graph'>Loading graph...</div>", | |
width="40%", | |
height="60%", | |
position="bottom-right", | |
shadow=2, | |
transition=1 | |
) | |
graph_id = st.session_state.graph_id | |
if 'key_concepts' in st.session_state: | |
key_concepts_html = "<h3>Key Concepts:</h3><p>" + ', '.join([f"{concept}: {freq:.2f}" for concept, freq in st.session_state.key_concepts]) + "</p>" | |
update_float_content(graph_id, key_concepts_html) | |
tab_concept, tab_entity = st.tabs(["Concept Graph", "Entity Graph"]) | |
with tab_concept: | |
if 'concept_graph' in st.session_state: | |
update_float_content(graph_id, st.session_state.concept_graph) | |
else: | |
update_float_content(graph_id, "No concept graph available.") | |
with tab_entity: | |
if 'entity_graph' in st.session_state: | |
update_float_content(graph_id, st.session_state.entity_graph) | |
else: | |
update_float_content(graph_id, "No entity graph available.") | |
if st.button("Close Graph", key="close_graph"): | |
toggle_float_visibility(graph_id, False) | |
st.session_state.show_graph = False | |
st.session_state.graph_id = None | |
st.rerun() |