Spaces:
Runtime error
Runtime error
import time # to simulate a real time data, time loop | |
import numpy as np # np mean, np random | |
import pandas as pd # read csv, df manipulation | |
import plotly.express as px # interactive charts | |
import streamlit as st # 🎈 data web app development | |
st.set_page_config( | |
page_title="Real-Time Data Science Dashboard", | |
page_icon="✅", | |
layout="wide", | |
) | |
# read csv from a github repo | |
dataset_url = "https://raw.githubusercontent.com/Lexie88rus/bank-marketing-analysis/master/bank.csv" | |
# read csv from a URL | |
def get_data() -> pd.DataFrame: | |
return pd.read_csv(dataset_url) | |
df = get_data() | |
# dashboard title | |
st.title("Real-Time / Live Data Science Dashboard") | |
# top-level filters | |
job_filter = st.selectbox("Select the Job", pd.unique(df["job"])) | |
# creating a single-element container | |
placeholder = st.empty() | |
# dataframe filter | |
df = df[df["job"] == job_filter] | |
# near real-time / live feed simulation | |
for seconds in range(200): | |
df["age_new"] = df["age"] * np.random.choice(range(1, 5)) | |
df["balance_new"] = df["balance"] * np.random.choice(range(1, 5)) | |
# creating KPIs | |
avg_age = np.mean(df["age_new"]) | |
count_married = int( | |
df[(df["marital"] == "married")]["marital"].count() | |
+ np.random.choice(range(1, 30)) | |
) | |
balance = np.mean(df["balance_new"]) | |
with placeholder.container(): | |
# create three columns | |
kpi1, kpi2, kpi3 = st.columns(3) | |
# fill in those three columns with respective metrics or KPIs | |
kpi1.metric( | |
label="Age ⏳", | |
value=round(avg_age), | |
delta=round(avg_age) - 10, | |
) | |
kpi2.metric( | |
label="Married Count 💍", | |
value=int(count_married), | |
delta=-10 + count_married, | |
) | |
kpi3.metric( | |
label="A/C Balance $", | |
value=f"$ {round(balance,2)} ", | |
delta=-round(balance / count_married) * 100, | |
) | |
# create two columns for charts | |
fig_col1, fig_col2 = st.columns(2) | |
with fig_col1: | |
st.markdown("### First Chart") | |
fig = px.density_heatmap( | |
data_frame=df, y="age_new", x="marital" | |
) | |
st.write(fig) | |
with fig_col2: | |
st.markdown("### Second Chart") | |
fig2 = px.histogram(data_frame=df, x="age_new") | |
st.write(fig2) | |
st.markdown("### Detailed Data View") | |
st.dataframe(df) | |
time.sleep(1) |