Spaces:
Sleeping
Sleeping
import gradio as gr | |
from huggingface_hub import InferenceClient | |
import os | |
MODELS = { | |
"Zephyr 7B Beta": "HuggingFaceH4/zephyr-7b-beta", | |
"DeepSeek Coder V2": "deepseek-ai/DeepSeek-Coder-V2-Instruct", | |
"Meta Llama 3.1 8B": "meta-llama/Meta-Llama-3.1-8B-Instruct", | |
"Mixtral 8x7B": "mistralai/Mixtral-8x7B-Instruct-v0.1", | |
"Cohere Command R+": "CohereForAI/c4ai-command-r-plus", | |
} | |
MODELS_REQUIRING_TOKEN = [ | |
"meta-llama/Meta-Llama-3.1-8B-Instruct", | |
"CohereForAI/c4ai-command-r-plus" | |
] | |
def get_client(model_name): | |
model_id = MODELS[model_name] | |
if model_id in MODELS_REQUIRING_TOKEN: | |
hf_token = os.getenv("HF_TOKEN") | |
if not hf_token: | |
raise ValueError(f"HF_TOKEN environment variable is required for {model_name}") | |
return InferenceClient(model_id, token=hf_token) | |
return InferenceClient(model_id) | |
def respond( | |
message, | |
chat_history, | |
model_name, | |
max_tokens, | |
temperature, | |
top_p, | |
system_message, | |
): | |
try: | |
client = get_client(model_name) | |
except ValueError as e: | |
return str(e) | |
messages = [{"role": "system", "content": system_message}] | |
for human, assistant in chat_history: | |
messages.append({"role": "user", "content": human}) | |
messages.append({"role": "assistant", "content": assistant}) | |
messages.append({"role": "user", "content": message}) | |
response = "" | |
for message in client.chat_completion( | |
messages, | |
max_tokens=max_tokens, | |
stream=True, | |
temperature=temperature, | |
top_p=top_p, | |
): | |
token = message.choices[0].delta.content | |
response += token | |
yield response | |
def clear_conversation(): | |
return None | |
with gr.Blocks() as demo: | |
gr.Markdown("# Advanced AI Chatbot") | |
gr.Markdown("Chat with different language models and customize your experience!") | |
with gr.Row(): | |
with gr.Column(scale=1): | |
model_name = gr.Radio( | |
choices=list(MODELS.keys()), | |
label="Language Model", | |
value="Zephyr 7B Beta" | |
) | |
max_tokens = gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max New Tokens") | |
temperature = gr.Slider(minimum=0.1, maximum=2.0, value=0.7, step=0.1, label="Temperature") | |
top_p = gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)") | |
system_message = gr.Textbox( | |
value="You are a friendly and helpful AI assistant.", | |
label="System Message", | |
lines=3 | |
) | |
with gr.Column(scale=2): | |
chatbot = gr.Chatbot() | |
msg = gr.Textbox(label="Your message") | |
with gr.Row(): | |
submit_button = gr.Button("Submit") | |
clear_button = gr.Button("Clear") | |
msg.submit(respond, [msg, chatbot, model_name, max_tokens, temperature, top_p, system_message], chatbot) | |
submit_button.click(respond, [msg, chatbot, model_name, max_tokens, temperature, top_p, system_message], chatbot) | |
clear_button.click(clear_conversation, outputs=chatbot, queue=False) | |
if __name__ == "__main__": | |
demo.launch() |